Electrochemical study on preparation of Mg-Li-Yb alloys in LiCl-KCl-KF-MgCl2-Yb2O3 melts
来源期刊:Journal of Rare Earths2012年第2期
论文作者:陈丽军 张密林 韩伟 颜永得 曹鹏
文章页码:159 - 163
摘 要:This paper presented a novel study on electrochemical codeposition of Mg-Li-Yb alloys in LiCl-KCl-KF-MgCl2-Yb2O3 melts on molybdenum. The factors of the current efficiency were investigated. Electrolysis temperature had great influence on current efficiency; the highest current efficiency was obtained when electrolysis temperature was about 660 oC. The content of Li in Mg-Li-Yb alloys increased with the high current densities. The optimal electrolytic temperature and cathodic current density were around 660 oC and 9.3 A/cm2, respectively. The chemical content, phases, morphology of the alloys and the distribution of the elements were analyzed by X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, respectively. The intermetallic of Mg-Yb was mainly distributed in the grain boundary of the alloys, presented as reticulated structures, and refined the grains. The lithium and ytterbium contents in Mg-Li-Yb al-loys could be controlled by changing the concentration of MgCl2 and Yb2O3 and the electrolysis conditions.
陈丽军,张密林,韩伟,颜永得,曹鹏
Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University
摘 要:This paper presented a novel study on electrochemical codeposition of Mg-Li-Yb alloys in LiCl-KCl-KF-MgCl2-Yb2O3 melts on molybdenum. The factors of the current efficiency were investigated. Electrolysis temperature had great influence on current efficiency; the highest current efficiency was obtained when electrolysis temperature was about 660 oC. The content of Li in Mg-Li-Yb alloys increased with the high current densities. The optimal electrolytic temperature and cathodic current density were around 660 oC and 9.3 A/cm2, respectively. The chemical content, phases, morphology of the alloys and the distribution of the elements were analyzed by X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, respectively. The intermetallic of Mg-Yb was mainly distributed in the grain boundary of the alloys, presented as reticulated structures, and refined the grains. The lithium and ytterbium contents in Mg-Li-Yb al-loys could be controlled by changing the concentration of MgCl2 and Yb2O3 and the electrolysis conditions.
关键词: