简介概要

基于K-means和Random Forest的WiFi室内定位方法

来源期刊:控制工程2017年第4期

论文作者:李军 何星 蔡云泽 徐琴

文章页码:787 - 792

关键词:室内定位;WiFi;Random Forest;K-means;多模融合;

摘    要:为了减小室内环境因素对室内WiFi定位的影响,降低定位成本,提高定位精度以及扩大定位区域,通过对室内定位系统和机器学习算法的讨论,提出了一种基于K-means和Random Forest融合的WiFi室内定位算法。针对室内WiFi信号强度分布的特点,该算法通过K-means聚类改进算法对数据进行初始分类,然后使用Random Forest对初始分类结果进行二次分类。实验结果表明,该定位算法的定位精度在2米以内的概率为89.1%,达到预期的定位效果,同时对缺失值数据具有较好的适应能力。

详情信息展示

基于K-means和Random Forest的WiFi室内定位方法

李军1,何星1,蔡云泽1,徐琴2

1. 上海交通大学自动化系系统控制与信息处理教育部重点实验室2. 国网上海市电力公司电力科学研究院

摘 要:为了减小室内环境因素对室内WiFi定位的影响,降低定位成本,提高定位精度以及扩大定位区域,通过对室内定位系统和机器学习算法的讨论,提出了一种基于K-means和Random Forest融合的WiFi室内定位算法。针对室内WiFi信号强度分布的特点,该算法通过K-means聚类改进算法对数据进行初始分类,然后使用Random Forest对初始分类结果进行二次分类。实验结果表明,该定位算法的定位精度在2米以内的概率为89.1%,达到预期的定位效果,同时对缺失值数据具有较好的适应能力。

关键词:室内定位;WiFi;Random Forest;K-means;多模融合;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号