简介概要

使用改进蚁群算法的AGV路径规划研究

来源期刊:机械设计与制造2020年第6期

论文作者:葛志远 肖本贤

文章页码:241 - 492

关键词:路径规划;AGV;蚁群算法;信息素;最大最小蚂蚁系统;死锁现象;

摘    要:AGV路径规划问题是AGV研究领域的一个关键技术问题。针对传统的蚁群算法耗时长,搜索效率低,容易出现次优的缺点,改进了计算基本蚁群算法启发因子的方法;提出了优胜劣汰机制以及全局信息素调整方案,合理地更新了路径规划中的信息素;利用最大最小蚂蚁系统对路径上信息素进行了限制;研究了路径规划中死锁问题的解决方法。最后给出了基于改进蚁群算法的AGV路径规划步骤并进行了仿真实验。仿真实验结果表明,在该算法作用下,AGV路径规划的搜索效率优于传统蚁群算法,且规划路径更短,提高了搜索的准确性。

详情信息展示

使用改进蚁群算法的AGV路径规划研究

葛志远,肖本贤

合肥工业大学电气与自动化工程学院

摘 要:AGV路径规划问题是AGV研究领域的一个关键技术问题。针对传统的蚁群算法耗时长,搜索效率低,容易出现次优的缺点,改进了计算基本蚁群算法启发因子的方法;提出了优胜劣汰机制以及全局信息素调整方案,合理地更新了路径规划中的信息素;利用最大最小蚂蚁系统对路径上信息素进行了限制;研究了路径规划中死锁问题的解决方法。最后给出了基于改进蚁群算法的AGV路径规划步骤并进行了仿真实验。仿真实验结果表明,在该算法作用下,AGV路径规划的搜索效率优于传统蚁群算法,且规划路径更短,提高了搜索的准确性。

关键词:路径规划;AGV;蚁群算法;信息素;最大最小蚂蚁系统;死锁现象;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号