简介概要

Phase structure and hydrogen storage properties of REMg8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) hydrogen storage alloys

来源期刊:JOURNAL OF RARE EARTHS2013年第8期

论文作者:刘岩青 韩树民 扈琳 刘宝忠 赵鑫 贾彦虹

文章页码:784 - 789

摘    要:REMg 8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) alloys were prepared by induction melting and following annealing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the alloys were composed of Mg2Ni, (La, Pr, Nd)Mg2Ni, (La, Ce)2Mg17 , (Ce, Pr, Nd)Mg12 and Ce2Ni7 phases. The above phases were disproportioned into Mg2NiH4 , MgH2 and REH x (x=2.51 or 3) phases in hydriding. CeH2.51 phase transformed into CeH2.29 phase in dehydriding, whereas LaH3 , PrH3 and NdH3 phases remained unchanged. The PrMg8.41Ni2.14Al0.20 alloy had the fastest hydriding kinetics and the highest dehydriding plateau pressure while the CeMg8.35Ni2.18Al0.21 alloy presented the best hydriding/dehydriding reversibility. The onset hydrogen desorption temperature of the CeMg8.35Ni2.18Al0.21 hydride decreased remarkably owing to the phase transformation between the CeH2.51 and the CeH2.29 .

详情信息展示

Phase structure and hydrogen storage properties of REMg8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) hydrogen storage alloys

刘岩青1,韩树民1,2,扈琳1,刘宝忠2,3,赵鑫1,贾彦虹1

1. College of Environmental and Chemical Engineering, Yanshan University2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University3. School of Materials Science and Engineering, Henan Polytechnic University

摘 要:REMg 8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) alloys were prepared by induction melting and following annealing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the alloys were composed of Mg2Ni, (La, Pr, Nd)Mg2Ni, (La, Ce)2Mg17 , (Ce, Pr, Nd)Mg12 and Ce2Ni7 phases. The above phases were disproportioned into Mg2NiH4 , MgH2 and REH x (x=2.51 or 3) phases in hydriding. CeH2.51 phase transformed into CeH2.29 phase in dehydriding, whereas LaH3 , PrH3 and NdH3 phases remained unchanged. The PrMg8.41Ni2.14Al0.20 alloy had the fastest hydriding kinetics and the highest dehydriding plateau pressure while the CeMg8.35Ni2.18Al0.21 alloy presented the best hydriding/dehydriding reversibility. The onset hydrogen desorption temperature of the CeMg8.35Ni2.18Al0.21 hydride decreased remarkably owing to the phase transformation between the CeH2.51 and the CeH2.29 .

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号