简介概要

Nanoscale deformation of multiaxially forged ultrafine-grained Mg-2Zn-2Gd alloy with high strength-high ductility combination and comparison with the coarse-grained counterpart

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2018年第2期

论文作者:K.Li V.S.Y.Injeti P.Trivedi L.E.Murr R.D.K.Misra

文章页码:311 - 316

摘    要:Cold processing of magnesium(Mg) alloys is a challenge because Mg has a hexagonal close-packed(HCP)lattice with limited slip systems, which makes it difficult to plastically deform at low temperature. To address this challenge, a combination of annealing of as-cast alloy and multi-axial forging was adopted to obtain isotropic ultrafine-grained(UFG) structure in a lean Mg-2Zn-2Gd alloy with high strength(yield strength: 227 MPa)-high ductility(% elongation: 30%) combination. This combination of strength and ductility is excellent for the lean alloy, enabling an understanding of deformation processes in a formable high strength Mg-rare earth alloy. The nanoscale deformation behavior was studied via nanoindentation and electron microscopy, and the behavior was compared with its low strength(yield strength: 46 MPa)-low ductility(% elongation: 7%) coarse-grained(CG) counterpart. In the UFG alloy, extensive dislocation slip was an active deformation mechanism, while in the CG alloy, mechanical twinning occurred.The differences in the deformation mechanisms of UFG and CG alloys were reflected in the discrete burst in the load-displacement plots. The deformation of Mg-2Zn-2Gd alloys was significantly influenced by the grain structure, such that there was change in the deformation mechanism from dislocation slip(non-basal slip) to nanoscale twins in the CG structure. The high plasticity of UFG Mg alloy involved high dislocation activity and change in activation volume.

详情信息展示

Nanoscale deformation of multiaxially forged ultrafine-grained Mg-2Zn-2Gd alloy with high strength-high ductility combination and comparison with the coarse-grained counterpart

K.Li,V.S.Y.Injeti,P.Trivedi,L.E.Murr,R.D.K.Misra

Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso

摘 要:Cold processing of magnesium(Mg) alloys is a challenge because Mg has a hexagonal close-packed(HCP)lattice with limited slip systems, which makes it difficult to plastically deform at low temperature. To address this challenge, a combination of annealing of as-cast alloy and multi-axial forging was adopted to obtain isotropic ultrafine-grained(UFG) structure in a lean Mg-2Zn-2Gd alloy with high strength(yield strength: 227 MPa)-high ductility(% elongation: 30%) combination. This combination of strength and ductility is excellent for the lean alloy, enabling an understanding of deformation processes in a formable high strength Mg-rare earth alloy. The nanoscale deformation behavior was studied via nanoindentation and electron microscopy, and the behavior was compared with its low strength(yield strength: 46 MPa)-low ductility(% elongation: 7%) coarse-grained(CG) counterpart. In the UFG alloy, extensive dislocation slip was an active deformation mechanism, while in the CG alloy, mechanical twinning occurred.The differences in the deformation mechanisms of UFG and CG alloys were reflected in the discrete burst in the load-displacement plots. The deformation of Mg-2Zn-2Gd alloys was significantly influenced by the grain structure, such that there was change in the deformation mechanism from dislocation slip(non-basal slip) to nanoscale twins in the CG structure. The high plasticity of UFG Mg alloy involved high dislocation activity and change in activation volume.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号