简介概要

Influence of carbon-partitioning treatment on the microstructure, mechanical properties and wear resistance of in situ VCp-reinforced Fe-matrix composite

来源期刊:International Journal of Minerals Metallurgy and Materials2020年第1期

论文作者:Ping-hu Chen Yun Zhang Rui-qing Li Yan-xing Liu

文章页码:100 - 111

摘    要:The wear resistance of iron(Fe)-matrix materials could be improved through the in situ formation of vanadium carbide particles(VCp)with high hardness. However, brittleness and low impact toughness limit their application in several industries due to addition of higher carbon content. Carbon-partitioning treatment plays an important role in tuning the microstructure and mechanical properties of in situ VCp-reinforced Fe-matrix composite. In this study, the influences of carbon-partitioning temperatures and times on the microstructure, mechanical properties, and wear resistance of in situ VCp-reinforced Fe-matrix composite were investigated. The experimental results indicated that a certain amount of retained austenite could be stabilized at room temperature through the carbon-partitioning treatment. Microhardness of in situ VCp-reinforced Fematrix composite under carbon-partitioning treatment could be decreased, but impact toughness was improved accordingly when wear resistance was enhanced. In addition, the enhancement of wear resistance could be attributed to transformation-induced plasticity(TRIP) effect, and phase transformation was caused from γ-Fe(face-centered cubic structure, fcc) to α-Fe(body-centered cubic structure, bcc) under a certain load.

详情信息展示

Influence of carbon-partitioning treatment on the microstructure, mechanical properties and wear resistance of in situ VCp-reinforced Fe-matrix composite

Ping-hu Chen1,Yun Zhang2,Rui-qing Li2,Yan-xing Liu3

1. School of Advanced Materials, Peking University Shenzhen Graduate School2. Light Alloy Research Institutes and State Key Laboratory of High Performance Complex Manufacturing, Central South University3. School of Mechanical Engineering, Dong Guan University of Technology

摘 要:The wear resistance of iron(Fe)-matrix materials could be improved through the in situ formation of vanadium carbide particles(VCp)with high hardness. However, brittleness and low impact toughness limit their application in several industries due to addition of higher carbon content. Carbon-partitioning treatment plays an important role in tuning the microstructure and mechanical properties of in situ VCp-reinforced Fe-matrix composite. In this study, the influences of carbon-partitioning temperatures and times on the microstructure, mechanical properties, and wear resistance of in situ VCp-reinforced Fe-matrix composite were investigated. The experimental results indicated that a certain amount of retained austenite could be stabilized at room temperature through the carbon-partitioning treatment. Microhardness of in situ VCp-reinforced Fematrix composite under carbon-partitioning treatment could be decreased, but impact toughness was improved accordingly when wear resistance was enhanced. In addition, the enhancement of wear resistance could be attributed to transformation-induced plasticity(TRIP) effect, and phase transformation was caused from γ-Fe(face-centered cubic structure, fcc) to α-Fe(body-centered cubic structure, bcc) under a certain load.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号