文章编号:1004-0609(2013)04-1047-06
锂离子电池富锂材料Li[Li0.2Ni0.2Mn0.6]O2的制备及掺杂改性
朱伟雄,李新海,王志兴,郭华军
(中南大学 冶金科学与工程学院,长沙 410083)
摘 要:以乙酸盐为原料,采用喷雾干燥法制备层状α-NaFeO2结构的富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2及掺杂Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2。采用X射线衍射、扫描电镜、半电池充放电和电化学阻抗谱等方法研究材料的物相、结构、形貌及电化学性能。结果表明:Cr掺杂使材料的颗粒变粗,但不改变材料的结构,而使材料的层状特征更为明显;Cr掺杂后材料的电化学性能得到明显改善,电荷转移阻抗Rct从275.0 Ω降低到105.0 Ω,循环稳定性和倍率性能均有所改善,Li[Li0.2Ni0.15Cr0.1Mn0.55]O2材料1C倍率下的放电比容量为140.0 mA·h/g,循环50次后放电比容量为133.7 mA·h/g,远高于未掺杂Cr材料的比容量,未掺杂Cr材料在1C倍率下放电比容量为107.1 mA·h/g,循环50次后放电比容量为102.1 mA·h/g。
关键词:富锂正极材料;Li[Li0.2Ni0.2Mn0.6]O2;喷雾干燥;Cr掺杂;锂离子电池
中图分类号:TM912 文献标志码:A
Synthesis and modification of Li-rich cathode
Li[Li0.2Ni0.2Mn0.6]O2 for Li-ion batteries
ZHU Wei-xiong, LI Xin-hai, WANG Zhi-xing, GUO Hua-jun
(School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China)
Abstract: Layered Li-rich cathode Li[Li0.2Ni0.2Mn0.6]O2 and Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 materials with α-NaFeO2 structure were prepared by spray-drying method using aqueous solutions of corresponding metal acetates as the reactants. The composition, crystalline structure, morphology and electrochemical properties of the as-prepared materials were characterized by XRD, SEM and half cell charge-discharge testing and AC impedance. The results show that Cr-doping increases the particle size, Cr-doping does not change the material structure but leads to a better defined, layered structure. The Cr-doped material Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 shows better electrochemical performance, it has lower impedance value (105.0 Ω) compared with that of the undoped material (275.0 Ω), better cycle performance and superior rate capability. It delivers the first discharge specific capacity of 140.0 mA·h/g at 1C and the capacity retention of this sample after 50 cycles at 1C rate is 133.7 mA·h/g, while the undoped sample delivers the first discharge specific capacity of 107.1 mA·h/g at 1C and remains 102.1 mA·h/g at 1C rate after 50 cycles.
Key words: Li-rich cathode; Li[Li0.2Ni0.2Mn0.6]O2; spray-drying; Cr-doping; Li-ion battery
基金项目:湖南省科技重大专项计划资助项目(2011FJ1005)
收稿日期:2012-05-22;修订日期:2012-07-23
通信作者:李新海,教授,博士;电话:0731-88836633;E-mail:stefaniehl23@163.com
锂离子二次电池以其高能量密度、低自放电率和高电压, 被广泛用于现代通讯、空间技术、信息技术、国防等高科技领域, 被誉为高效的绿色能源[1]。目前,与锂离子电池负极的发展相对比,正极材料的发展稍显缓慢,近年来高容量和循环稳定的富锂正极材料引起广泛关注。由于Li2MO3和LiMO2两种类型的化合物结构相近,KIM等[2]提出在嵌入型正极材料LiMO2(M=Co, Ni, Mn)中引入非电化学活性的Li2MO3 (如Li2MnO3、Li2TiO3或Li2ZrO3)来稳定其结构,以制备层状锰基富锂材料。与目前商业化的正极材料LiCoO2相比,该材料因比容量高、价格低廉、环境友好、安全性能好等优点,备受关注并得到广泛的研 究[3-7]。LU等[3]和KANG等[4-5]以Li[Li1/3Mn2/3]O2相和Li[Mn0.5Ni0.5]O2相为基体制备的固溶体Li[Li(1/3-2x/3)Mn(2/3-x/3)Nix]O2(0≤x≤0.5)在2.0~4.8 V充放电电压范围内比容量达到250 mA·h/g。富锂材料Li[Li1/3-2x/3Mn2/3-x/3Mx]O2虽有诸多优点,仍有若干固有缺陷制约着这种材料的进一步发展,如首次循环中不可逆容量过大、在高的截止电压下结构不稳定、热稳定性差、倍率性能差等[8-9]。该材料在高倍率下电化学性能严重恶化,当电流密度从20 mA/g增加到300 mA/g时,LiNi0.2Li0.2Mn0.6O2的放电比容量从260 mA·h/g衰减到160 mA·h/g[9]。研究者们主要通过颗粒纳米化[10-11]、表面包覆[12-13]、与其他材料复合[14]以及掺杂金属阳离子[15-16]等途径来提高Li[Li(1/3-2x/3)Mn(2/3-x/3)Mx]O2的倍率性能。
本文作者以乙酸盐为原料,采用喷雾干燥法制备Li[Li0.2Ni0.2Mn0.6]O2材料,由于Cr3+的半径较小,利用Cr替代部分Ni和Mn,以减小晶胞半径、稳定材料的结构,并采用X射线衍射、扫描电镜、半电池充放电和电化学阻抗谱等方法考察掺杂对材料形貌、结构和性能的影响。
1 实验
1.1 材料的制备
按Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2(x=0,0.1)化学计量比将Ni(CH3COO)2·4H2O、Mn(CH3COO)2·4H2O、CH3COOLi·2H2O和(CH3COO)3Cr溶于一定量的水中,搅拌形成CTM=0.2 mol/L的均匀透明的溶液。将该溶液进行喷雾干燥,保持进风温度200 ℃,出风温度100 ℃,得到均一的粉末,置于400 ℃马弗炉中预焙烧 6 h,所得前驱体研磨后置入程序控温管式炉,于氧气气氛加热至900 ℃,保温12 h后自然冷却得到目标产物Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2。
1.2 材料的表征
采用SDTQ600TG-DTA设备对喷雾干燥得到的前驱体粉末进行热重(TG) 和差热分析(DTA),温度范围为室温至1 000 ℃,升温速率为10 ℃/min。利用扫描电镜(SEM,JEOL,JSM-5600LV)对样品的表面形貌进行分析;采用日本Rint-2000型X射线衍射仪分析样品的物相组成(Cu Kα辐射,扫描速率5 (°)/min,管电压40 kV,管电流250 mA,扫描范围2θ=10°~75°)。
1.3 电池的组装与测试
将合成的正极材料Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2 (x=0,0.1)、乙炔黑和聚偏氟乙烯(PVDF)按质量比8:1:1混合,加入溶剂N-甲基-2-吡咯烷酮(NMP)调制成浆,均匀刮涂于铝箔上,置于120 ℃烘箱中干燥后,制成φ=14 mm的正极片,将正极片与负极片(Li,d=14 mm)、电解液(1 mol/L的LiPF6/DMC+EMC+EC(体积比为1:1:1))和隔膜(Celgard2400)在保护的手套箱内装配成2025型扣式电池,电池静置几小时后用深圳新威BTS-5 V/1 mA电池测试仪进行恒电流充放电测试,充放电电压范围为2.3~4.6 V;采用上海辰华CHl660A电化学工作站进行交流阻抗测试,测试频率为10-2 Hz~105 Hz,振幅为5 mV。
2 结果与讨论
2.1 热分析
喷雾干燥法制备的前驱体的TG-DTA曲线如图1所示。两个样品的DTA曲线上, 在50~230 ℃间有几个吸热的小峰,此段对应吸附水和结晶水的失去过程,在230~500 ℃间有一个尖锐的放热峰,对应于柠檬取的锂盐、过渡金属盐及乙酸根的分解及生成 Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2的固相反应,500 ℃以后TG曲线变化平缓,期间没有质量损失,这对应材料的晶化过程。对比两条TG-DTA曲线可知,Li[Li0.2Ni0.2Mn0.6]O2前驱体在温度高于474.43 ℃之后基本没有热流和质量变化,开始材料的晶化过程,而Li[Li0.2Ni0.15Cr0.1Mn0.55]O2前驱体在温度高于450.94 ℃以后开始材料的晶化过程。
2.2 X射线衍射分析
图2所示为富锂材料Li[Li0.2Ni0.2Mn0.6]O2和Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的XRD谱。从图2可以看出,除在20°~25°间出现小峰外,两个样品的其他峰都是以α-NaFeO2(R-3m)结构为基础,LU等[3]认为20°~25°附近的峰是由过渡金属层Li、Mn的超晶格有序排列引起,是层状Li2MnO3的特征峰。掺Cr后样品未出现杂相,表明Cr已全部进入材料的晶格,形成了良好的固溶体,但其衍射峰的峰位整体向小角度偏移。I003/I104(R)通常用来表征层状结构的阳离子混排情况,当该值大于1.311时,表明不存在阳离子混排[17],该比值越大,正极材料的层状结构越理想,根据XRD谱计算I003/I104,掺Cr样品的I003/I104值(1.544)比富锂材料Li[Li0.2Ni0.2Mn0.6]O2(1.410)大,表明掺Cr以后材料的层状结构更为理想。
图1 Li[Li0.2Ni0.2Mn0.6]O2和Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的前驱体的TG/DTA曲线
Fig. 1 TG/DTA curves of precursor of Li[Li0.2Ni0.2Mn0.6]O2 (a) and Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 (b)
图2 样品Li[Li0.2Ni0.2Mn0.6]O2和Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的XRD谱
Fig. 2 XRD patterns of Li[Li0.2Ni0.2Mn0.6]O2 (a) and Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 (b) samples
富锂材料的晶格常数如表1所列。从表1可得出,掺杂后样品的晶格常数a和c小于纯相的晶格常数,这可能是Cr3+的半径(0.62 ?)比Ni2+半径(0.69 ?)和Mn4+半径(0.67 ?)均小,Cr替代Ni、Mn引起晶胞体积的收缩,从而在脱嵌锂过程中增强了结构的稳定性。此外,c/a的值通常用来衡量层状材料的六方晶系特征,当c/a的值大于4.9时[17],表明材料有良好的层状特征。从表1可以看出,掺杂样品c/a值增大,表明掺Cr后材料的层状结构更为理想,与I003/I104的分析结果一致。
表1 样品Li[Li0.2Ni0.2Mn0.6]O2和Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的晶胞常数
Table 1 Calculated lattice parameter of Li[Li0.2Ni0.2Mn0.6]O2 and Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 samples
2.3 合成样品颗粒形貌分析
图3(a)和3(b)所示分别为纯相Li[Li0.2Ni0.2Mn0.6]O2的SEM像,图3(c)和3(d)所示分别为掺Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的SEM像。从图中可看出,采用喷雾干燥法制备的材料颗粒都比较均匀细小,纯相及Cr掺杂的样品都同时存在细小的一次颗粒和由一次颗粒团聚而成的二次颗粒。纯相样品的一次颗粒尺寸都在0.5 μm以下,掺Cr后样品颗粒变大,团聚情况得到明显改善。其一次颗粒尺寸为0.5~1.0 μm,且掺Cr后的样品呈八面体状,这是由于掺Cr使得晶体的表面能变化引起的,有研究表明,掺Cr能使晶体的表面能增大,从而使得材料颗粒增大[18]。
图3 样品Li[Li0.2Ni0.2Mn0.6]O2和Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的SEM像
Fig. 3 SEM images of Li[Li0.2Ni0.2Mn0.6]O2 ((a), (b)) and Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 ((c), (d)) samples
2.4 电化学性能分析
图4(a)、(b)、(c)所示为富锂材料Li[Li0.2Ni0.2Mn0.6]O2和掺Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2样品在首次循环后的交流阻抗图谱及其等效电路模拟曲线。从图4可见,模拟结果与测试结果基本吻合,说明等效电路是合理的。等效电路中,用Re描述电解液电阻,在阻抗谱中表现为极高频率下z′轴的截距;用Rct和CPE1并联描述Li+在活性物质表面和界面膜之间的电荷迁移电阻和双电层容,其中,常相位元件CPEl为拟合数据引入的实验参数[19],Li+在电极材料中由扩散所引起的Warburg阻抗用ZW描述,阻抗谱中表现为低频区的直线。
图4 样品Li[Li0.2Ni0.2Mn0.6]O2和Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的交流阻抗谱、等效电路模拟曲线及交流阻抗等效拟合电路
Fig. 4 EIS and equivalent circuit fitting results of Li[Li0.2Ni0.2Mn0.6]O2 (a), and Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 (b) and selected equivalent circuit (c) used to fit EIS
由拟合结果可得,Cr3+的掺入使电荷转移阻抗Rct大大减小,从275.0 Ω降低到105.0 Ω,这说明Cr3+掺杂能大幅度提高材料电极表面的电荷传递速率,从而改善材料的倍率性能;此外,Cr3+的掺入也使得低频区直线的斜率增大,即Warburg阻抗减小,从而有利于Li+在电极材料中的扩散[20]。
图5所示为富锂材料Li[Li0.2Ni0.2Mn0.6]O2和掺Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2样品在0.1C倍率下的首次和第5次充放电曲线。从图5可以得出,掺Cr后材料的充电平台降低,放电平台提高,电化学极化减小;同时充放电容量增大。两者首次充电时在4.5 V处都出现一个平台,该平台对应首次充电过程中Li2O从材料结构不可逆脱出[1],从而使得材料的不可逆容量都较大。未掺杂样品0.1C倍率下首次充电比容量为161.6 mA·h/g,放电比容量为116.9 mA·h/g,5次循环后基本稳定,放电比容量为133 mA·h/g。掺Cr样品的电化学性能更优,在0.1C倍率下首次充电比容量达290.5 mA·h/g,放电比容量达201.7 mA·h/g,5次循环后放电比容量为219.2 mA·h/g。
图6所示为富锂材料Li[Li0.2Ni0.2Mn0.6]O2和掺Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2样品在不同倍率下的充放电循环曲线。从图6易得出掺Cr后材料的循环稳定性比原样品好,其原因可能是Cr3+半径比Ni2+、Mn4+的半径更小,掺入后替代Ni、Mn引起了晶胞体积的收缩,从而在脱嵌锂过程中增强了结构的稳定。掺Cr后材料倍率性能也优于原样品的,这与图4的分析结果一致,未掺杂材料在0.5C和1C倍率下的放电比容量分别为125.1和107.1 mA·h/g,在1C倍率下循环50次循环后放电比容量为102.1 mA·h/g,掺Cr后材料在0.5C、1C倍率下比容量分别为168.3和140.0 mA·h/g,在1C下循环50次后容量为133.7 mA·h/g。
图5 样品Li[Li0.2Ni0.2Mn0.6]O2和Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的充放电曲线
Fig. 5 Charge and discharge curves of Li[Li0.2Ni0.2Mn0.6]O2 (a) and Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 (b) samples
图6 样品Li[Li0.2Ni0.2Mn0.6]O2和Li[Li0.2Ni0.15Cr0.1Mn0.55]O2的充放电曲线
Fig. 6 Cycle performances of Li[Li0.2Ni0.2Mn0.6]O2 and Li[Li0.2Ni0.15Cr0.1Mn0.55]O2 samples
3 结论
1) 采用喷雾干燥法合成Li[Li0.2Ni0.2Mn0.6]O2和掺Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2样品的前驱体,经焙烧后得到亚微米级的产物,掺杂Cr后能使材料颗粒变大。
2) 掺杂Cr虽然没有改变材料的结构,但使材料的层状特征更为明显,同时材料的晶胞参数变小,进而改善了材料的循环稳定性。
3) 掺杂Cr提高了材料的充放电比容量,1C倍率首次放电比容量从107.1增加到140.0 mA·h/g ,使材料的电荷转移阻抗Rct从275.0 Ω降低到105.0 Ω,大幅提高了材料的电荷传递速率,从而改善了材料的倍率性能。
REFERENCES
[1] 钟 辉, 许 惠. 锂离子电池正极材料LiCo0.3Ni0.7-xSrxO2的合成及其电化学性能[J]. 中国有色金属学报, 2004, 14(2): 157-161.
ZHONG Hei, XU Hui. Preparation and electrochemical properties of LiCo0.3Ni0.7-xSrxO2 cathode materials for lithium ion batteries[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(2): 157-161.
[2] KIM J S, JOHNSON C S, VAUGHEY J T, THACKERAY M. Electrochemical and structural properties of xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M=Ti, Mn, Zr; 0≤x≤0.3)[J]. Chemistry of Materials, 2004, 16(10): 1996-2006.
[3] LU Z, BEAULIEU L Y, DONABERGER R A, THOMAS C L, DAHN J R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. Journal of The Electrochemical Society, 2002, 149(6): 778-791.
[4] KANG S H, SUN Y K, AMINE K. Electrochemical and Ex situ X-ray study of Li(Li0.2Ni0.2Mn0.6)O2 cathode material for Li secondary batteries[J]. Electrochemical Solid-State Letters, 2003, 6(9): 183-186.
[5] KANG S H, AMINE K. Synthesis and electrochemical properties of layer-structured 0.5Li(Ni0.5Mn0.5)O2 -0.5Li(Li1/3Mn2/3)O2 solid mixture[J]. Journal of Power Sources, 2003, 124(2): 533-537.
[6] BARKHOUSE A R, DAHN J R. A novel fabrication technique for producing dense Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2, 0≤x≤1/2[J]. Journal of the Electrochemical Society, 2005, 152(4): 746-751.
[7] JIANG J, EBERMAN K W, KRAUSE L J, DAHN J R. Structure, electrochemical properties, and thermal stability studies of cathode materials in the xLi[Mn1/2Ni1/2]O2·yLiCoO2·zLi[Li1/3Mn2/3]O2 pseudoternary system (x+y+z=1)[J]. Journal of the Electrochemical Society, 2005, 152(9): 1879-1889.
[8] ARMSTRONG A R, HOLZAPFEL M, NOVAK P, JOHNSON C S, KANG S H, THACKERAY M M, BRUCE P G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698.
[9] HONG Y S, PARK Y J, RYU K S. Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1-2x)/3Mn(2-x)/3]O2 prepared by a simple combustion method[J]. Journal of Materials Chemistry, 2004, 14(9): 1424-1429.
[10] RYU J H, PARK B G, KIM S B, PARK Y J. Effects of surface area on electrochemical performance of Li[Ni0.2Li0.2Mn0.6]O2 cathode material[J]. Journal of Applied Electrochemistry, 2009, 39(2): 1059-1066.
[11] KIM Y J, HONG Y S, KIM M G, CHO J. Li0.93[Li0.21Co0.28Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite[J]. Electrochemistry Communication, 2007, 9: 1041-1046.
[12] MYUNG S T, KOMABA S, YASHIRO H, BANG H J, SUN Y K, KUMAGAI N. Functionality of oxide coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries[J]. Phys Chem C, 2007, 111(10): 4061-4067.
[13] KANG Y J, KIM J H, LEE S W, SUN Y K. The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery[J]. Electrochimica Acta, 2005, 50(24): 4784-4791.
[14] GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communication, 2009, 11(1): 84-86.
[15] KIM J H, PARK C W, SUN Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials[J]. Solid State Ionics, 2003, 164(1): 43-49.
[16] PARK S H, SUN Y K. Synthesis and electrochemical properties of layered Li[Li0.25Ni(0.275-x/2)AlxMn(0.575-x/2)]O2 materials prepared by sol-gel method[J]. Journal of Power Sources, 2003, 119/121: 161-165.
[17] LI D, SASAKI Y, KOBAYAKAWA K C, SATO Y C. Morphological, structural, and electrochemical characteristics of LiNi0.5Mn0.4M0.1O2 (M=Li, Mg, Co, Al)[J]. Journal of Power Sources, 2006, 157(1): 488-493.
[18] KIM G T, KIM J U, SIM Y J, KIM K W. Electrochemical properties of LiCrxNi0.5-xMn0.5O2 prepared by co-precipitation method for lithium secondary batteries[J]. Journal of Power Sources, 2006, 158(2): 1414-1418.
[19] CHANG Y C, SOHN H J. Electrochemical impedance analysis for lithium ion intercalation into graphitized carbon[J]. Journal of Electrochemical Society, 2000, 147(1): 50-58.
[20] 伍 凌, 王志兴, 李新海, 李灵均, 郑俊超, 郭华军, 刘久清. 前驱体掺杂一常温球磨还原制备Ti4+掺杂LiFePO4[J]. 中南大学学报: 自然科学版, 2009, 40(2): 288-293.
WU Ling, WANG Zhi-xing, LI Xin-hai, LI Ling-jun, ZHENG Jun-chao, GUO Hua-jun, LIU Jiu-qing. Preparation of Ti4+-doped LiFePO4 by precursor-doping and room temperature reduction Via ball-milling[J]. Journal of Central South University:Science and Technology, 2009, 40(2):288-293.
(编辑 龙怀中)