简介概要

Wrinkled Graphene-Reinforced Nickel Sulfide Thin Film as High-Performance Binder-Free Anode for Sodium-Ion Battery

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第8期

论文作者:Xueke Xia Jian Xie Shichao Zhang Bin Pan Gaoshao Cao Xinbing Zhao

文章页码:775 - 780

摘    要:Sodium-ion batteries(SIBs) recently have received a worldwide attention due to the resource abundance of sodium and similar battery chemistry with lithium-ion batteries(LIBs). However, search for suitable anodes for SIBs still remains a challenge since graphitized carbon, the anode for commercial LIBs, usually exhibits low electrochemical Na-storage activity. In this work, a unique graphene-reinforced Ni3S2 thin film(Ni3S2/G) has been constructed and investigated as a promising anode for SIBs. The Ni3S2 thin film has a thickness of 200–300 nm and is composed of small sized crystals of around 100 nm. The graphene has a wrinkled surface profile which offers three-dimensional networks for electron conductivity and structural reinforcement. The Ni3S2/G thin film exhibits high capacity, excellent cycling stability and good rate capability due to the introduction of wrinkled graphene. Ni3S2/G can deliver a high initial capacity of 791 m Ah g-1at 50 m A g-1. The capacity can be maintained at 563 m Ah g-1after 110 cycles.This work provides a unique design for high-performance SIBs anodes.

详情信息展示

Wrinkled Graphene-Reinforced Nickel Sulfide Thin Film as High-Performance Binder-Free Anode for Sodium-Ion Battery

Xueke Xia1,Jian Xie1,2,Shichao Zhang3,Bin Pan4,Gaoshao Cao2,Xinbing Zhao1,2

1. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University2. Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province3. School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics4. Industrial Technology Research Institute of Zhejiang University

摘 要:Sodium-ion batteries(SIBs) recently have received a worldwide attention due to the resource abundance of sodium and similar battery chemistry with lithium-ion batteries(LIBs). However, search for suitable anodes for SIBs still remains a challenge since graphitized carbon, the anode for commercial LIBs, usually exhibits low electrochemical Na-storage activity. In this work, a unique graphene-reinforced Ni3S2 thin film(Ni3S2/G) has been constructed and investigated as a promising anode for SIBs. The Ni3S2 thin film has a thickness of 200–300 nm and is composed of small sized crystals of around 100 nm. The graphene has a wrinkled surface profile which offers three-dimensional networks for electron conductivity and structural reinforcement. The Ni3S2/G thin film exhibits high capacity, excellent cycling stability and good rate capability due to the introduction of wrinkled graphene. Ni3S2/G can deliver a high initial capacity of 791 m Ah g-1at 50 m A g-1. The capacity can be maintained at 563 m Ah g-1after 110 cycles.This work provides a unique design for high-performance SIBs anodes.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号