Influences of molybdenum substitution for cobalt on the phase structure and electrochemical kinetic properties of AB5-type hydrogen storage alloys
来源期刊:Journal of Rare Earths2011年第7期
论文作者:杨淑琴 韩树民 宋建争 李媛
文章页码:692 - 697
摘 要:The effects of the partial replacement of Co with Mo on the phase structure and electrochemical kinetic properties of La0.35Ce0.65Ni3.54Co0.80-xMn0.35Al0.32Mox (x=0.00, 0.10, 0.15, 0.20, 0.25) hydrogen storage alloys prepared by arc-melting method were sys-tematically studied in this paper. The X-ray diffraction (XRD) showed that after partial substitution of Mo for Co, the alloys remained a single LaNi5 phase with a hexagonal CaCu5-type structure. The P-C isotherms indicated that the equilibrium pressure gradually decreased with in-creasing of Mo content. Electrochemical studies showed that the substitution of Mo for Co could greatly increase discharge capacity, improve activation ability and reduce self-discharge of alloy electrodes. The alloy with x=0.25 exhibited a higher rate dischargeability (HRD1200= 50.9%). Moreover, Mo is a vital element in favor of kinetic properties of AB5-type hydrogen storage alloys. As Mo content increased, the ex-change current density I0, the hydrogen diffusion rate gradually increased.
杨淑琴1,2,韩树民1,2,宋建争2,李媛2
1. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University2. College of Environmental and Chemical Engineering, Yanshan University
摘 要:The effects of the partial replacement of Co with Mo on the phase structure and electrochemical kinetic properties of La0.35Ce0.65Ni3.54Co0.80-xMn0.35Al0.32Mox (x=0.00, 0.10, 0.15, 0.20, 0.25) hydrogen storage alloys prepared by arc-melting method were sys-tematically studied in this paper. The X-ray diffraction (XRD) showed that after partial substitution of Mo for Co, the alloys remained a single LaNi5 phase with a hexagonal CaCu5-type structure. The P-C isotherms indicated that the equilibrium pressure gradually decreased with in-creasing of Mo content. Electrochemical studies showed that the substitution of Mo for Co could greatly increase discharge capacity, improve activation ability and reduce self-discharge of alloy electrodes. The alloy with x=0.25 exhibited a higher rate dischargeability (HRD1200= 50.9%). Moreover, Mo is a vital element in favor of kinetic properties of AB5-type hydrogen storage alloys. As Mo content increased, the ex-change current density I0, the hydrogen diffusion rate gradually increased.
关键词: