Effect of Cr2O3 addition on the oxidation induration mechanism of Hongge vanadium titanomagnetite pellets
来源期刊:International Journal of Minerals Metallurgy and Materials2018年第4期
论文作者:Wei Li Nan Wang Gui-qin Fu Man-sheng Chu Miao-yong Zhu
文章页码:391 - 398
摘 要:As part of a research project to develop a novel clean smelting process for the comprehensive utilization of Hongge vanadium titanomagnetite(HVTM), in this study, the effect of Cr2O3 addition on the oxidation induration mechanism of HVTM pellets(HVTMPs) was investigated in detail. The results showed that the compressive strength of the HVTMPs was greatly weakened by the Cr2O3 addition, mainly because of a substantial increase in the porosity of the HVTMPs. The Cr2O3 addition marginally affected the phase composition but greatly affected the microstructural changes of the HVTMPs. Increased amounts of Cr2O3 resulted in a decrease in the uniform distribution of the hematite grains and in an increase in the Fe–Cr solid solutions(Fe1.2Cr0.8O3 and Fe0.7Cr1.3O3) embedded in the hematite grains. Moreover, the compact hematite was destroyed by forming a dispersed structure and the hematite recrystallization was hindered during the oxidation induration, which adversely affected the compressive strength. On the basis of these results, a schematic was formulated to describe the oxidation induration mechanism with different amounts of added Cr2O3. This study provides theoretical and technical foundations for the effective production of HVTMPs and a reference for chromium-bearing minerals.
Wei Li,Nan Wang,Gui-qin Fu,Man-sheng Chu,Miao-yong Zhu
School of Metallurgy, Northeastern University
摘 要:As part of a research project to develop a novel clean smelting process for the comprehensive utilization of Hongge vanadium titanomagnetite(HVTM), in this study, the effect of Cr2O3 addition on the oxidation induration mechanism of HVTM pellets(HVTMPs) was investigated in detail. The results showed that the compressive strength of the HVTMPs was greatly weakened by the Cr2O3 addition, mainly because of a substantial increase in the porosity of the HVTMPs. The Cr2O3 addition marginally affected the phase composition but greatly affected the microstructural changes of the HVTMPs. Increased amounts of Cr2O3 resulted in a decrease in the uniform distribution of the hematite grains and in an increase in the Fe–Cr solid solutions(Fe1.2Cr0.8O3 and Fe0.7Cr1.3O3) embedded in the hematite grains. Moreover, the compact hematite was destroyed by forming a dispersed structure and the hematite recrystallization was hindered during the oxidation induration, which adversely affected the compressive strength. On the basis of these results, a schematic was formulated to describe the oxidation induration mechanism with different amounts of added Cr2O3. This study provides theoretical and technical foundations for the effective production of HVTMPs and a reference for chromium-bearing minerals.
关键词: