简介概要

Aging behavior of a copper-bearing high-strength low-carbon steel

来源期刊:International Journal of Minerals Metallurgy and Materials2018年第4期

论文作者:Babak Shahriari Reza Vafaei Ehsan Mohammad Sharifi Khosro Farmanesh

文章页码:429 - 438

摘    要:The effects of aging temperature and time on the hardness and impact toughness of a copper-bearing high-strength low-carbon steel were investigated. The hardness of the aged samples reached maxima after 1 h and 5 h of aging at 500 and 450℃, respectively; this increase in hardness was followed by a decrease in hardness until a temperature of 700℃, at which secondary hardening was observed. The impact toughness of the aged steel was found to be higher for 5 h of aging. Transmission electron microscopy confirmed the presence of carbide and copper precipitates; also, the secondary hardening could be the result of the transformation of austenite(formed in the aging treatment) to martensite. Differential scanning calorimetry of the steel was performed to better understand the precipitation behavior. The results revealed that the precipitation of the steel exhibited two significant stages of copper precipitate nucleation and coarsening of the precipitates, with corresponding activation energies of 49 and 238 k J·mol-1, respectively.

详情信息展示

Aging behavior of a copper-bearing high-strength low-carbon steel

Babak Shahriari,Reza Vafaei,Ehsan Mohammad Sharifi,Khosro Farmanesh

Department of Materials Engineering, Malek Ashtar University of Technology

摘 要:The effects of aging temperature and time on the hardness and impact toughness of a copper-bearing high-strength low-carbon steel were investigated. The hardness of the aged samples reached maxima after 1 h and 5 h of aging at 500 and 450℃, respectively; this increase in hardness was followed by a decrease in hardness until a temperature of 700℃, at which secondary hardening was observed. The impact toughness of the aged steel was found to be higher for 5 h of aging. Transmission electron microscopy confirmed the presence of carbide and copper precipitates; also, the secondary hardening could be the result of the transformation of austenite(formed in the aging treatment) to martensite. Differential scanning calorimetry of the steel was performed to better understand the precipitation behavior. The results revealed that the precipitation of the steel exhibited two significant stages of copper precipitate nucleation and coarsening of the precipitates, with corresponding activation energies of 49 and 238 k J·mol-1, respectively.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号