简介概要

无模型容积卡尔曼滤波及其应用

来源期刊:控制与决策2013年第5期

论文作者:魏喜庆 宋申民

文章页码:769 - 773

关键词:非线性滤波;容积卡尔曼滤波;高斯过程回归;模型不确定性;

摘    要:提出一种融合高斯过程回归(GPR)的无模型容积卡尔曼滤波(MF-CKF)方法.容积卡尔曼滤波(CKF)是一种新的非线性高斯滤波方法,比无迹卡尔曼滤波(UKF)更具优势.为了克服建模不准确时容积卡尔曼滤波精度下降问题,通过将高斯过程回归引入到容积卡尔曼滤波之中,对训练数据学习建立系统非线性模型,从而有效地避免模型不准确造成的滤波性能下降.仿真结果验证了无模型容积卡尔曼滤波在系统模型不准确情况下的优越性.

详情信息展示

无模型容积卡尔曼滤波及其应用

魏喜庆,宋申民

哈尔滨工业大学控制理论与制导技术研究中心

摘 要:提出一种融合高斯过程回归(GPR)的无模型容积卡尔曼滤波(MF-CKF)方法.容积卡尔曼滤波(CKF)是一种新的非线性高斯滤波方法,比无迹卡尔曼滤波(UKF)更具优势.为了克服建模不准确时容积卡尔曼滤波精度下降问题,通过将高斯过程回归引入到容积卡尔曼滤波之中,对训练数据学习建立系统非线性模型,从而有效地避免模型不准确造成的滤波性能下降.仿真结果验证了无模型容积卡尔曼滤波在系统模型不准确情况下的优越性.

关键词:非线性滤波;容积卡尔曼滤波;高斯过程回归;模型不确定性;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号