Microstructure and Mechanical Properties of Cold Metal Transfer Welding Similar and Dissimilar Aluminum Alloys
来源期刊:Acta Metallurgica Sinica2015年第6期
论文作者:Ahmed Elrefaey Nigel G.Ross
文章页码:715 - 724
摘 要:Integrating structures made from aluminum alloys in automotive industry requires a large amount of joining. As a consequence, the properties of the joints have a significant influence on the overall performance of the whole structure.Robot cold metal transfer welding is a relatively new joining technique and has been used in this work to join 6082-T4 and5182-O aluminum alloy sheets by using ER5356 and ER4043 filler metals. Microstructure characterization was performed by optical microscopy and energy dispersive X-ray spectroscopy, and the mechanical properties were measured by tensile and hardness tests. A correlation is made between welding variables, mechanical properties and the microstructure of welded joints. Results indicate that robot cold metal transfer welding provides good joint efficiency with high welding speed, good tensile strength, and ductility. Owing to the low heat input of robot cold metal transfer welding process, the heat affected zone microstructure was quite similar to base metals, and weld metal microstructure was the controlling factor of joint efficiency. The best performing were the 5182/5182 joints welded with ER5356 and these had mechanical property coefficients of 100%, 98%, and 85% for yield strength, ultimate tensile strength, and elongation, respectively.
Ahmed Elrefaey,Nigel G.Ross
LKR Leichtmetallkompetenzzentrum Ranshofen GmbH,Austrian Institute of Technology
摘 要:Integrating structures made from aluminum alloys in automotive industry requires a large amount of joining. As a consequence, the properties of the joints have a significant influence on the overall performance of the whole structure.Robot cold metal transfer welding is a relatively new joining technique and has been used in this work to join 6082-T4 and5182-O aluminum alloy sheets by using ER5356 and ER4043 filler metals. Microstructure characterization was performed by optical microscopy and energy dispersive X-ray spectroscopy, and the mechanical properties were measured by tensile and hardness tests. A correlation is made between welding variables, mechanical properties and the microstructure of welded joints. Results indicate that robot cold metal transfer welding provides good joint efficiency with high welding speed, good tensile strength, and ductility. Owing to the low heat input of robot cold metal transfer welding process, the heat affected zone microstructure was quite similar to base metals, and weld metal microstructure was the controlling factor of joint efficiency. The best performing were the 5182/5182 joints welded with ER5356 and these had mechanical property coefficients of 100%, 98%, and 85% for yield strength, ultimate tensile strength, and elongation, respectively.
关键词: