Electrochemical Performance of Nanocrystalline and Amorphous Mg–Nd–Ni–Cu-Based Mg2Ni-type Alloy Electrodes Used in Ni-MH Batteries
来源期刊:Acta Metallurgica Sinica2014年第6期
论文作者:Yanghuan Zhang Haitao Wang Xiaoping Dong Wengang Bu Zeming Yuan Guofang Zhang
文章页码:1088 - 1098
摘 要:Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffraction,scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the alloy electrodes was measured using an automatic galvanostatic system. The electrochemical impedance spectra and Tafel polarisation curves of the alloy electrodes were plotted using an electrochemical work station. The hydrogen diffusion coefficients were calculated using the potential step method. Results indicate that all the as-cast alloys present a multiphase structure with Mg2 Ni type as the major phase with Mg6 Ni, Nd5Mg41 and Nd Ni as secondary phases. The secondary phases increased with the increasing Nd content. The as-spun Nd-free alloy exhibited nanocrystalline structure, whereas the as-spun Nd-doped alloys exhibited nanocrystalline and amorphous structures. These results suggest that adding Nd facilitates glass formation of Mg2Ni-type alloys. Melt spinning and Nd addition improved alloy electrochemical performance, which includes discharge potential characteristics, discharge capacity, electrochemical cycle stability and high-rate discharge ability.
Yanghuan Zhang1,2,Haitao Wang1,Xiaoping Dong3,Wengang Bu2,Zeming Yuan2,Guofang Zhang1
1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology2. Department of Functional Material Research, Central Iron and Steel Research Institute3. College of Quality and Technical Supervision,Hebei University
摘 要:Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffraction,scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the alloy electrodes was measured using an automatic galvanostatic system. The electrochemical impedance spectra and Tafel polarisation curves of the alloy electrodes were plotted using an electrochemical work station. The hydrogen diffusion coefficients were calculated using the potential step method. Results indicate that all the as-cast alloys present a multiphase structure with Mg2 Ni type as the major phase with Mg6 Ni, Nd5Mg41 and Nd Ni as secondary phases. The secondary phases increased with the increasing Nd content. The as-spun Nd-free alloy exhibited nanocrystalline structure, whereas the as-spun Nd-doped alloys exhibited nanocrystalline and amorphous structures. These results suggest that adding Nd facilitates glass formation of Mg2Ni-type alloys. Melt spinning and Nd addition improved alloy electrochemical performance, which includes discharge potential characteristics, discharge capacity, electrochemical cycle stability and high-rate discharge ability.
关键词: