简介概要

Synthesis of LiFePO4 /C as cathode material by a novel optimized hydrothermal method

来源期刊:Rare Metals2011年第5期

论文作者:GAO Ge, LIU Aifang, HU Zhonghua, XU Yuanyuan, and LIU Yafei Department of Chemistry, Tongji University, Shanghai , China

文章页码:433 - 438

摘    要:Olivine LiFePO 4 , as a cathode material for lithium ion batteries, was prepared by a novel optimized hydrothermal method; afterwards, the product mixed with glucose was two-step (350℃ and 700℃) calcinated under high-purity N 2 atmosphere to obtain the LiFePO 4 /C composite. The study on the hydrothermal preparation method, which focused on the influences of molar ratios, initial pH value, reaction temperature, and duration, was made to promote the resultant performances and to investigate the relations between the performances and the reaction conditions. The resultant samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical tests, which include charge-discharge, electrochemical impedance spectroscopy, and cyclic voltammetry. The result shows that the optimal hydrothermal condition is to set the Li:Fe:P molar ratio at 3:1:1 and the reaction temperature at 180℃ for 5 h duration with an initial pH value of 7. The optimized sample, with an average particle size of 100 to 300 nm and a discharge capacity of 118.2 mAh·g-1 at 0.1C, exhibits a stable and narrow-gapped charge-discharge platform and small capacity losses after cycles.

详情信息展示

Synthesis of LiFePO4 /C as cathode material by a novel optimized hydrothermal method

摘要:Olivine LiFePO 4 , as a cathode material for lithium ion batteries, was prepared by a novel optimized hydrothermal method; afterwards, the product mixed with glucose was two-step (350℃ and 700℃) calcinated under high-purity N 2 atmosphere to obtain the LiFePO 4 /C composite. The study on the hydrothermal preparation method, which focused on the influences of molar ratios, initial pH value, reaction temperature, and duration, was made to promote the resultant performances and to investigate the relations between the performances and the reaction conditions. The resultant samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical tests, which include charge-discharge, electrochemical impedance spectroscopy, and cyclic voltammetry. The result shows that the optimal hydrothermal condition is to set the Li:Fe:P molar ratio at 3:1:1 and the reaction temperature at 180℃ for 5 h duration with an initial pH value of 7. The optimized sample, with an average particle size of 100 to 300 nm and a discharge capacity of 118.2 mAh·g-1 at 0.1C, exhibits a stable and narrow-gapped charge-discharge platform and small capacity losses after cycles.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号