简介概要

In-situ Synthesis of Coral-Like Molybdenum Phosphide(MoP) Microspheres for Lithium-Ion Battery

来源期刊:Acta Metallurgica Sinica2021年第3期

论文作者:Xinlong Liu Wei Yang Zhiting Liu Haosen Fan Wenzhi Zheng

文章页码:401 - 409

摘    要:Molybdenum phosphide(MoP) has attracted extensive attention as promising anode candidates for lithium-ion batteries owing to its high specific capacity,low potential range and low polarization.However,severe volume changes and intrinsic low conductivity are major challenges for further application of MoP electrode materials.In this work,a coral-like MoP microsphere encapsulated by N-doped carbon(MoP@NDC) was successfully prepared through annealing the precursor derived from self-polymerization of dopamine with phosphomolybdic acid.The introduction of carbon framework not only serves as matrix to confine MoP nanocrystals from aggregations,but also improves the electrochemical conductivity and facilitates lithium ion or electron transport on the surface of MoP.Such hierarchical structure delivered high discharge capacity of 495 mAh g-1 after 300 cycles with 90.1 % capacity retention,which could be attributed to the synergistic effects of MoP nanoparticles and conductive carbon network.This design strategy shows MoP@NDC electrode with applicable application as anode in lithium-ion battery.

详情信息展示

In-situ Synthesis of Coral-Like Molybdenum Phosphide(MoP) Microspheres for Lithium-Ion Battery

Xinlong Liu,Wei Yang,Zhiting Liu,Haosen Fan,Wenzhi Zheng

School of Chemistry and Chemical Engineering,Guangzhou University

摘 要:Molybdenum phosphide(MoP) has attracted extensive attention as promising anode candidates for lithium-ion batteries owing to its high specific capacity,low potential range and low polarization.However,severe volume changes and intrinsic low conductivity are major challenges for further application of MoP electrode materials.In this work,a coral-like MoP microsphere encapsulated by N-doped carbon(MoP@NDC) was successfully prepared through annealing the precursor derived from self-polymerization of dopamine with phosphomolybdic acid.The introduction of carbon framework not only serves as matrix to confine MoP nanocrystals from aggregations,but also improves the electrochemical conductivity and facilitates lithium ion or electron transport on the surface of MoP.Such hierarchical structure delivered high discharge capacity of 495 mAh g-1 after 300 cycles with 90.1 % capacity retention,which could be attributed to the synergistic effects of MoP nanoparticles and conductive carbon network.This design strategy shows MoP@NDC electrode with applicable application as anode in lithium-ion battery.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号