简介概要

Low-temperature electrochemical synthesis and characterization of ultrafine Y(OH)3 and Y2O3 nanoparticles

来源期刊:Journal of Rare Earths2012年第3期

论文作者:Mehdi GHAEMI

文章页码:236 - 240

摘    要:Ultrafine Y(OH)3 nanoparticles were successfully deposited from an additive-free 0.005 mol/L YCl3 low-temperature bath on the steel cathode at the current density of 0.5 mA/cm2 and bath temperature of 10 oC. Heat treatment of the prepared Y(OH)3 nanoparticles at 600 oC in air led to the formation of Y2O3 nanoparticles. Thermal behavior and phase transformation during the heat treatment of Y(OH)3 were investigated by differential scanning calorimetry (DSC) and thermogramimetric analysis (TGA). The morphologies, crystal structures and compositions of the prepared materials were examined by means of scanning and transmission electron microscopy (SEM and TEM) as well as X-ray diffraction (XRD) and FT-IR spectroscopy. The results showed that the prepared Y(OH)3 nanoparticles was essentially amorphous and composed of well dispersed ultrafine particles with size of 4 nm. After heat treatment, the obtained oxide product was well crystallized cubic phase of Y2O3 nanoparticles with the grain size of around 5 nm. It was concluded that low-temperature cathodic electrodeposition offered a facile and feasible way for preparation of ultrafine Y(OH)3 and Y2O3 nanoparticles.

详情信息展示

Low-temperature electrochemical synthesis and characterization of ultrafine Y(OH)3 and Y2O3 nanoparticles

Mehdi GHAEMI3

3. Department of Chemistry, Science Faculty, Golestan University, P.O. Box 49138-15739 Gorgan, Iran

摘 要:Ultrafine Y(OH)3 nanoparticles were successfully deposited from an additive-free 0.005 mol/L YCl3 low-temperature bath on the steel cathode at the current density of 0.5 mA/cm2 and bath temperature of 10 oC. Heat treatment of the prepared Y(OH)3 nanoparticles at 600 oC in air led to the formation of Y2O3 nanoparticles. Thermal behavior and phase transformation during the heat treatment of Y(OH)3 were investigated by differential scanning calorimetry (DSC) and thermogramimetric analysis (TGA). The morphologies, crystal structures and compositions of the prepared materials were examined by means of scanning and transmission electron microscopy (SEM and TEM) as well as X-ray diffraction (XRD) and FT-IR spectroscopy. The results showed that the prepared Y(OH)3 nanoparticles was essentially amorphous and composed of well dispersed ultrafine particles with size of 4 nm. After heat treatment, the obtained oxide product was well crystallized cubic phase of Y2O3 nanoparticles with the grain size of around 5 nm. It was concluded that low-temperature cathodic electrodeposition offered a facile and feasible way for preparation of ultrafine Y(OH)3 and Y2O3 nanoparticles.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号