STRUCTURE IMPROVEMENT AND TEMPERATURE FIELD SIMULATION OF PREPARING NANOPOWDER BY EVAPORATION-CONDENSATION METHOD
来源期刊:Acta Metallurgica Sinica2008年第3期
论文作者:J.S.Bao T.G.Liu Y.Yin Z.Y.Yang
Key words:Evaporation-condensation method; Electric arc heating; Temperature field; Condenser structure;
Abstract: A new apparatus, with a segregable conical water cooling condenser, which is heated by an electric arc using the evaporation-condensation method to prepare carbon-coated nanopowder, has been developed by the authors. Numerical simulation of the temperaturc field is done by the ANSYS software, and temperature in the reaction vessel is measured with the help of an experiment, to verify the simulation result. Influence of the temperature field in the reaction vessel, on the process of preparing nanopowder is then discussed simply. It is shown that the segrcgable conical water cooling condenser and carbon-coated surface process can be used to prepare steady carbon-coated metal nanopowder, at a lower cost and higher yield rate than the traditional structure. Simulation of the temperature field in the apparatus shows that the arc heating method can form a temperature field in the apparatus, which is quite favorable for nanopowder formation. Experiments show that the rational parameters using this apparatus, with the arc heating method to prepare carbon-coated nanopowder are electricity 60-100 A and arc length 5-8 mm.
J.S.Bao1,T.G.Liu1,Y.Yin1,Z.Y.Yang1
(1.School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China)
Abstract:A new apparatus, with a segregable conical water cooling condenser, which is heated by an electric arc using the evaporation-condensation method to prepare carbon-coated nanopowder, has been developed by the authors. Numerical simulation of the temperaturc field is done by the ANSYS software, and temperature in the reaction vessel is measured with the help of an experiment, to verify the simulation result. Influence of the temperature field in the reaction vessel, on the process of preparing nanopowder is then discussed simply. It is shown that the segrcgable conical water cooling condenser and carbon-coated surface process can be used to prepare steady carbon-coated metal nanopowder, at a lower cost and higher yield rate than the traditional structure. Simulation of the temperature field in the apparatus shows that the arc heating method can form a temperature field in the apparatus, which is quite favorable for nanopowder formation. Experiments show that the rational parameters using this apparatus, with the arc heating method to prepare carbon-coated nanopowder are electricity 60-100 A and arc length 5-8 mm.
Key words:Evaporation-condensation method; Electric arc heating; Temperature field; Condenser structure;
【全文内容正在添加中】