简介概要

Investigation of Work Hardening Behavior of Inconel X-750 Alloy

来源期刊:Acta Metallurgica Sinica2017年第9期

论文作者:Pei-Tao Hua Wei-Hong Zhang Lin-Jie Huang Wen-Ru Sun

文章页码:869 - 877

摘    要:The constant strain rate uniaxial compression tests were conducted in this paper for studying the work hardening behavior and revealing the underlying microstructure evolution involved in the plastic response of the nickel-based Inconel X-750 alloy. The work hardening rate versus true strain plots of Inconel X-750 alloy resembled that of low-stacking-fault energy(SFE) alloys with distinct four stages. The dislocations were found in the planar arrangements at a strain of 0.1located at the onset of stage II, and the dislocation density was increased and the planar arrangement configuration was partially destroyed at a strain of 0.36 located in stage III. It was unexpected that deformation twins were observed at a strain of 0.69 located in stage IV although the alloy has been classified into materials with a higher SFE value. The result is different with a similar study, in which the deformation twins were absent in Ni–Cr-based alloy Inconel 625 even when the strain was as high as 0.65. It was deemed that the low level of solution strengthening favored the deformation of matrix and the activation of slip system for twining in Inconel X-750 alloy. Unlike the low-SFE alloys that the twins were always formed at the end of stage I, the higher SFE delayed the twin formation to stage IV for Inconel X-750 alloy. The welldeveloped planar dislocation configuration gave rise to the stage II with a slightly decreasing rate, the collapse of planar dislocation arrangements caused the occurrence of stage III with an accelerated decreasing rate, and the twin formation led to the stage IV with a nearly constant work hardening rate.

详情信息展示

Investigation of Work Hardening Behavior of Inconel X-750 Alloy

Pei-Tao Hua1,2,Wei-Hong Zhang1,Lin-Jie Huang1,2,Wen-Ru Sun1

1. Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences2. University of Chinese Academy of Sciences

摘 要:The constant strain rate uniaxial compression tests were conducted in this paper for studying the work hardening behavior and revealing the underlying microstructure evolution involved in the plastic response of the nickel-based Inconel X-750 alloy. The work hardening rate versus true strain plots of Inconel X-750 alloy resembled that of low-stacking-fault energy(SFE) alloys with distinct four stages. The dislocations were found in the planar arrangements at a strain of 0.1located at the onset of stage II, and the dislocation density was increased and the planar arrangement configuration was partially destroyed at a strain of 0.36 located in stage III. It was unexpected that deformation twins were observed at a strain of 0.69 located in stage IV although the alloy has been classified into materials with a higher SFE value. The result is different with a similar study, in which the deformation twins were absent in Ni–Cr-based alloy Inconel 625 even when the strain was as high as 0.65. It was deemed that the low level of solution strengthening favored the deformation of matrix and the activation of slip system for twining in Inconel X-750 alloy. Unlike the low-SFE alloys that the twins were always formed at the end of stage I, the higher SFE delayed the twin formation to stage IV for Inconel X-750 alloy. The welldeveloped planar dislocation configuration gave rise to the stage II with a slightly decreasing rate, the collapse of planar dislocation arrangements caused the occurrence of stage III with an accelerated decreasing rate, and the twin formation led to the stage IV with a nearly constant work hardening rate.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号