简介概要

Change in Surface Microstructure and Properties of PTFE after Solar Radiation and its Mechanism

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2019年第1期

论文作者:马国政 DING Guangyu LIU Xuebin 王海斗 ZHAI Huanchun ZHU Hui

文章页码:223 - 229

摘    要:A series of solar radiation tests for the polytetrafluoroethylene(PTFE) bulk and film samples were carried out using Q-SUN XE-3-HSC type Solar Radiation Simulator, with the test parameters as follows: radiation intensity is 1 120 W/m2, temperature is 55 ℃ and humidity is 70% RH. Surface morphology, composition and microstructure of the PTFE samples before and after radiation tests were characterized contrastively. Effect of solar radiation on the tribology and wetting properties of PTFE were also studied by tribometer and contact angle tester, respectively. The results show that, for radiated PTFE, surface roughness, the relative content of C element, the friction coefficients and the contact angle with water increased in varying degrees. In conclusion, the obvious change in PTFE samples can be mainly attributed to break of(CFx)-C bonds after bombardment of high energy UV photons, which causes the loss of F-rich groups, oxidation, crosslinking and restructuring of active unsaturated groups.

详情信息展示

Change in Surface Microstructure and Properties of PTFE after Solar Radiation and its Mechanism

马国政1,2,DING Guangyu1,LIU Xuebin1,王海斗2,ZHAI Huanchun1,ZHU Hui1

1. China Huayin Ordnance Test Center2. National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering

摘 要:A series of solar radiation tests for the polytetrafluoroethylene(PTFE) bulk and film samples were carried out using Q-SUN XE-3-HSC type Solar Radiation Simulator, with the test parameters as follows: radiation intensity is 1 120 W/m2, temperature is 55 ℃ and humidity is 70% RH. Surface morphology, composition and microstructure of the PTFE samples before and after radiation tests were characterized contrastively. Effect of solar radiation on the tribology and wetting properties of PTFE were also studied by tribometer and contact angle tester, respectively. The results show that, for radiated PTFE, surface roughness, the relative content of C element, the friction coefficients and the contact angle with water increased in varying degrees. In conclusion, the obvious change in PTFE samples can be mainly attributed to break of(CFx)-C bonds after bombardment of high energy UV photons, which causes the loss of F-rich groups, oxidation, crosslinking and restructuring of active unsaturated groups.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号