摘 要:为提高航空发动机燃烧室内壁材料哈氏合金X(Hastelloy X)的腐蚀性能,利用强流脉冲电子束(high current pulsed electron beam,HCPEB)对哈氏合金X进行不同轰击次数的表面改性处理,研究改性前后试样的微观结构和电化学腐蚀性能变化规律。结果表明,HCPEB轰击使合金表面发生熔化,易熔相喷发形成熔坑形貌;随着轰击次数增加,表面熔坑数量减少,尺寸变大,金属表面呈现波浪形褶皱形貌。轰击后试样表面形成厚约1~3μm的重熔层,在其下方形成厚度为3~40μm不等的热影响区,随着轰击次数的增大,重熔层以及热影响区的范围增加,表面晶粒尺寸先变小后增大。HCPEB轰击还可在表层诱发塑性变形,出现滑移带等变形结构;电化学实验结果表明,HCPEB轰击提高了试样在模拟海水和酸性溶液中的耐腐蚀性能,其中低次轰击(1、5次)相比高次轰击(10、20次)后的样品腐蚀性能更好。这是由于HCPEB引起的重熔使表面组织分布均匀化,电化学特性相对一致,同时晶粒细化促进了表面致密连续的钝化膜的形成,对基体保护作用增强。HCPEB会引起金属表面结构变化,使哈氏合金X的腐蚀性能提升,低次轰击后(1、5次)的样品抗腐蚀性能最佳。
为提高航空发动机燃烧室内壁材料哈氏合金X(Hastelloy X)的腐蚀性能,利用强流脉冲电子束(high current pulsed electron beam,HCPEB)对哈氏合金X进行不同轰击次数的表面改性处理,研究改性前后试样的微观结构和电化学腐蚀性能变化规律。结果表明,HCPEB轰击使合金表面发生熔化,易熔相喷发形成熔坑形貌;随着轰击次数增加,表面熔坑数量减少,尺寸变大,金属表面呈现波浪形褶皱形貌。轰击后试样表面形成厚约1~3μm的重熔层,在其下方形成厚度为3~40μm不等的热影响区,随着轰击次数的增大,重熔层以及热影响区的范围增加,表面晶粒尺寸先变小后增大。HCPEB轰击还可在表层诱发塑性变形,出现滑移带等变形结构;电化学实验结果表明,HCPEB轰击提高了试样在模拟海水和酸性溶液中的耐腐蚀性能,其中低次轰击(1、5次)相比高次轰击(10、20次)后的样品腐蚀性能更好。这是由于HCPEB引起的重熔使表面组织分布均匀化,电化学特性相对一致,同时晶粒细化促进了表面致密连续的钝化膜的形成,对基体保护作用增强。HCPEB会引起金属表面结构变化,使哈氏合金X的腐蚀性能提升,低次轰击后(1、5次)的样品抗腐蚀性能最佳。
Microstructure and Corrosion Property of Hastelloy X by Surface Modification
Zou Hui Gao Danyi
Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance,Civil Aviation University of China
Sino-European Institute of Aviation Engineering,Civil Aviation University of China
Abstract:
The work aims to improve the corrosion performance of Hastelloy X which is the wall material of aero-engine combustion chamber. High current pulsed electron beam(HCPEB)was applied to modify the surface of Hastelloy X with different times of bombardment,the microstructure and electrochemical corrosion properties of the samples before and after modification were investigated.After HCPEB,bombardment caused the surface of Hastelloy X to melt,the fusible phase ablated and erupted,resulting in the formation of crater morphology. With the increase of HCPEB treatment times,the number of melting pits on the surface decreased,the size becamelarger,and the metal surface presented wavy fold morphology. After bombardment,a melted layer with thickness of about 1~3 μm was formed on the surface of the sample,and the heat-affected zone with thickness of 3~40 μm was formed below it. As the times of bombardment increased,the range of the melted layer and the heat-affected zone increased,and the surface grain size first decreased and then increased. HCPEB induced plastic deformation on the surface layer,resulting in deformation structure such as slip band.Electrochemical experiments showed that HCPEB improved the corrosion resistance of the samples in simulated seawater and acidic solution,and the corrosion resistance of the samples with low modification times(1,5 times)were better than that of samples with high modification times(10,20 times). This was because the remelting caused by HCPEB made the distribution of surface elements more uniform,the electrochemical properties became relatively uniform;at the same time,grain refinement promoted the formation of a dense and continuous passive film on the surface and enhanced the protective effect on the matrix. In conclusion,HCPEB changed the structure of metal surface and improved the corrosion properties of Hastelloy X. The samples with low modification times(1,5 times)had the best corrosion performance.
Keyword:
high current pulsed electron beam(HCPEB);surface modification;Hastelloy X;microstructure;corrosion property;
Received: 2019-04-10
镍基高温合金是指在650~1000℃的高温下具有高热稳定性的一类合金
[1],其中哈氏合金X(Hastelloy X)是由美国哈氏合金国际公司所生产的系列商业牌号合金之一,它是一种具有良好的抗腐蚀性和热稳定性的高级镍基高温合金,主要用于制造航空发动机燃烧室内壁和机匣
[2]。随着航空技术的发展,现代工业对航空飞机零部件表面性能要求越来越高,尤其当飞机处于海面上空或其他腐蚀潮湿环境下服役时,发动机部件的腐蚀行为会给安全飞行带来极大隐患,因此提升材料的耐腐蚀性能就显得尤为重要。已知,金属材料的微观组织在很大程度上决定了其宏观性能,而表面改性是一种优化合金表面的微观组织从而提升表面性能的有效方法,目前对于该方面的研究取得了一定的进展。张莹等
[3]对AZ31B镁合金进行表面喷丸处理,结果表明:激光喷丸处理后AZ31B镁合金抗腐蚀能力提高,这归因于激光喷丸诱导的晶粒细化和表面粗糙度的下降。陈东等
[4]采用冷喷涂技术在30Cr Mn Si A钢基体上制备纯铝涂层,结果表明冷喷涂纯铝涂层具有优异的耐腐蚀性能,腐蚀速率变小,表面质量良好。
如图3为哈氏合金经马布勒溶液(50 ml H2O、50 ml HCl、10 g Cu SO4)腐蚀后的截面金相(OM)形貌。HCPEB轰击结束后,表面熔化的液态金属通过金属基体导热而快速冷却,在金属表层形成了厚度约为几微米的重熔层,重熔层下方紧接着的部分是热影响区,从图3中看出,重熔层及热影响区与基体存在显著差异。1次轰击的试样截面重熔层不明显,只能清楚看到一条颜色较浅的热影响区,厚度约为3μm。5,10,20次轰击的试样截面都可清楚看到一条白亮的重熔层,厚度约为1~3μm,热影响区的厚度分别5,20,40μm。随着轰击次数的增大,由于HCPEB轰击产生的热积累效应造成重熔层和热影响区的范围增大。
图2 HCPEB处理后试样的表面形貌
Fig.2 OM images of Hastelloy X treated by HCPEB
(a)1 shot;(b)5 shots;(c)20 shots
图3 哈氏合金X侧面的微观形貌图片
Fig.3 Cross-sectional OM images of Hastelloy X treated by HCPEB