简介概要

Recovery of yttrium from deep-sea mud

来源期刊:Journal of Rare Earths2018年第8期

论文作者:Kuifang Zhang Zhiqiang Liu Changyong Sun Hongyang Cao Kechao Zhu Wei Zhu Wei Li

文章页码:863 - 872

摘    要:Deep-sea mud rich in rare earth yttrium has received lots of attention from the international community as a new resource for Y. A novel process, which mainly includes acid leaching, solvent extraction, and oxalic acid precipitation-roasting, is proposed for recovery of Y from deep-sea mud. A series of experiments were conducted to inspect the impacts of various factors during the process and the optimum conditions were determined. The results show that the Y of deep-sea mud totally exists in apatite minerals which can be decomposed by hydrochloric acid and sulfuric acid solution. The highest leaching efficiency of Y is 94.53% using hydrochloric acid and 84.38% using sulfuric acid under the conditions of H+concentration 2.0 mol/L, leaching time 60 min, liquid-solid ratio 4:1 and room temperature 25 ℃(only in case of sulfuric acid, when using hydrochloric acid, the leaching temperature should be 60 ℃). Because of the much lower leaching temperature, sulfuric acid leaching is preferred. The counter current extraction and stripping tests were simulated by a cascade centrifugal extraction tank device. Using 10 vol% P204,15 vol% TBP and 75 vol% sulfonated kerosene as extractant, 98.79% Y3+ and 42.60% Fe3+ are extracted from sulfuric acid leaching liquor(adjusted to pH = 2.0) after seven-stage counter current extraction with O/A ratio of 1:1 at room temperature, while other metals ions such as Al3+, Ca2+, Mg2+and Mn2+ are almost not extracted. The Y3+ in loaded organic can be selectively stripped using 50 g/L sulfuric acid solution and the stripping efficiency reaches 99.86% after seven-stage counter current stripping with O/A ratio of 10:1 at room temperature, while only 2.26% co-extracted Fe3+ is stripped. The Y3+ of loaded strip liquor can be precipitated by oxalic acid to further separate Y3+ and Fe3+. The precipitation efficiency of Y3+ in loaded strip liquor can be 98.56% while Fe3+ is not precipitated under the conditions of oxalic acid solution concentration 200 g/L, quality ratio of oxalic acid to Y of 2, and precipitation time 0.5 h. And the precipitate was roasted at 850 ℃ for 3 h to obtain the oxide of Y in which the purity of Y2 O3/REO is 79.02% and the contents of major non-rare earth impurities are less than 0.21%.Over the whole process included acid leaching, solvent extraction, and oxalic acid precipitation-roasting,the yttrium yield is 82.04%.

详情信息展示

Recovery of yttrium from deep-sea mud

Kuifang Zhang1,Zhiqiang Liu1,Changyong Sun1,Hongyang Cao1,Kechao Zhu2,Wei Zhu1,Wei Li1

1. Guangdong Province Key Laboratory of Rare Earth Development and Application, Guangdong Province Research Institute of Rare Metals2. Guangzhou Marine Geological Survey

摘 要:Deep-sea mud rich in rare earth yttrium has received lots of attention from the international community as a new resource for Y. A novel process, which mainly includes acid leaching, solvent extraction, and oxalic acid precipitation-roasting, is proposed for recovery of Y from deep-sea mud. A series of experiments were conducted to inspect the impacts of various factors during the process and the optimum conditions were determined. The results show that the Y of deep-sea mud totally exists in apatite minerals which can be decomposed by hydrochloric acid and sulfuric acid solution. The highest leaching efficiency of Y is 94.53% using hydrochloric acid and 84.38% using sulfuric acid under the conditions of H+concentration 2.0 mol/L, leaching time 60 min, liquid-solid ratio 4:1 and room temperature 25 ℃(only in case of sulfuric acid, when using hydrochloric acid, the leaching temperature should be 60 ℃). Because of the much lower leaching temperature, sulfuric acid leaching is preferred. The counter current extraction and stripping tests were simulated by a cascade centrifugal extraction tank device. Using 10 vol% P204,15 vol% TBP and 75 vol% sulfonated kerosene as extractant, 98.79% Y3+ and 42.60% Fe3+ are extracted from sulfuric acid leaching liquor(adjusted to pH = 2.0) after seven-stage counter current extraction with O/A ratio of 1:1 at room temperature, while other metals ions such as Al3+, Ca2+, Mg2+and Mn2+ are almost not extracted. The Y3+ in loaded organic can be selectively stripped using 50 g/L sulfuric acid solution and the stripping efficiency reaches 99.86% after seven-stage counter current stripping with O/A ratio of 10:1 at room temperature, while only 2.26% co-extracted Fe3+ is stripped. The Y3+ of loaded strip liquor can be precipitated by oxalic acid to further separate Y3+ and Fe3+. The precipitation efficiency of Y3+ in loaded strip liquor can be 98.56% while Fe3+ is not precipitated under the conditions of oxalic acid solution concentration 200 g/L, quality ratio of oxalic acid to Y of 2, and precipitation time 0.5 h. And the precipitate was roasted at 850 ℃ for 3 h to obtain the oxide of Y in which the purity of Y2 O3/REO is 79.02% and the contents of major non-rare earth impurities are less than 0.21%.Over the whole process included acid leaching, solvent extraction, and oxalic acid precipitation-roasting,the yttrium yield is 82.04%.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号