简介概要

Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2018年第7期

论文作者:Ying Wu Jianrong Liu Hao Wang Shaoxuan Guan Rui Yang Hongfu Xiang

文章页码:1189 - 1195

摘    要:In fatigue critical applications, Ti-10 V-2 Fe-3 Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10 V-2 Fe-3 Al alloy in very high cycle fatigue(VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initiation mechanism, from internal crack initiation to surface crack initiation and from αp cleavage to αs/βdecohesion, occur when the stress ratio(R) and stress level are reduced. Fatigue limits exist at Nf = 6 × 107 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of αp facets and αs/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from-0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.

详情信息展示

Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure

Ying Wu1,Jianrong Liu1,Hao Wang1,Shaoxuan Guan1,Rui Yang1,Hongfu Xiang2

1. Institute of Metal Research, Chinese Academy of Sciences2. National Demonstration Center for Experimental Materials Science and Engineering Education, Jiangsu University of Science and Technology

摘 要:In fatigue critical applications, Ti-10 V-2 Fe-3 Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10 V-2 Fe-3 Al alloy in very high cycle fatigue(VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initiation mechanism, from internal crack initiation to surface crack initiation and from αp cleavage to αs/βdecohesion, occur when the stress ratio(R) and stress level are reduced. Fatigue limits exist at Nf = 6 × 107 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of αp facets and αs/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from-0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号