简介概要

Dynamic mechanical behavior of a Zr-based bulk metallic glass during glass transition and crystallization

来源期刊:Rare Metals2009年第1期

论文作者:CHAO Qi, WANG Qing, and DONG Yuanda Institute of Materials Science, Shanghai University, Shanghai , China

文章页码:72 - 76

摘    要:The dynamic mechanical behaviors of the Zr41Ti14Cu12.5Ni8Be22.5Fe2 bulk metallic glass (BMG) during continuous heating at a constant rate were investigated. The glass transition and crystallization of the Zr-based BMG were thus characterized by the measurements of storage modulus E′ and internal friction Q-1. It was found that the variations of these dynamic mechanical quantities with temperature were interre-lated and were well in agreement with the DSC trace obtained at the same heating rate. The origin of the first peak in the internal friction curve was closely related to the dynamic glass transition and subsequent primary crystallization. Moreover, it can be well described by a physical model, which can characterize atomic mobility and mechanical response of disordered condense materials. In comparison with the DSC trace, the relative position of the first internal friction peak of the BMG was found to be dependent on its thermal stability against crys-tallization.

详情信息展示

Dynamic mechanical behavior of a Zr-based bulk metallic glass during glass transition and crystallization

摘要:The dynamic mechanical behaviors of the Zr41Ti14Cu12.5Ni8Be22.5Fe2 bulk metallic glass (BMG) during continuous heating at a constant rate were investigated. The glass transition and crystallization of the Zr-based BMG were thus characterized by the measurements of storage modulus E′ and internal friction Q-1. It was found that the variations of these dynamic mechanical quantities with temperature were interre-lated and were well in agreement with the DSC trace obtained at the same heating rate. The origin of the first peak in the internal friction curve was closely related to the dynamic glass transition and subsequent primary crystallization. Moreover, it can be well described by a physical model, which can characterize atomic mobility and mechanical response of disordered condense materials. In comparison with the DSC trace, the relative position of the first internal friction peak of the BMG was found to be dependent on its thermal stability against crys-tallization.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号