简介概要

Pitting corrosion of a Rare Earth Mg alloy GW93

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第9期

论文作者:Yingwei Song Dayong Shan En-Hou Han

文章页码:954 - 960

摘    要:Pitting corrosion of magnesium(Mg) alloys is greatly associated with their microstructure, especially second phases. The second phases in traditional Mg alloys such as AZ91 are electrochemically nobler than Mg matrix, while the second phases in Rare earth(RE) Mg alloy GW93 are more active than Mg matrix. As a result, the pitting corrosion mechanism of Mg alloy GW93 is different from the traditional ones. This paper aims to clarify the pitting corrosion mechanism of Mg alloy GW93 through the studies of Volta potential by Scanning Kelvin Probe Force Microscopy(SKPFM), corrosion morphology by Scanning Electron Microscope(SEM), and corrosion resistance by electrochemical tests. Results reveal that the pitting corrosion of GW93 includes three stages, first, dissolution of the second phases, followed by corrosion of Mg matrix adjacent to the dissolved second phases, and finally, propagation of corrosion pits along the depth direction of the dissolved second phases. Anodic second phases and enrichment of Clin the thick corrosion product films dominate the propagation of pitting corrosion.

详情信息展示

Pitting corrosion of a Rare Earth Mg alloy GW93

Yingwei Song,Dayong Shan,En-Hou Han

Key Laboratory of Nuclear Materials and Safety Assessment,Institute of Metal Research,Chinese Academy of Sciences

摘 要:Pitting corrosion of magnesium(Mg) alloys is greatly associated with their microstructure, especially second phases. The second phases in traditional Mg alloys such as AZ91 are electrochemically nobler than Mg matrix, while the second phases in Rare earth(RE) Mg alloy GW93 are more active than Mg matrix. As a result, the pitting corrosion mechanism of Mg alloy GW93 is different from the traditional ones. This paper aims to clarify the pitting corrosion mechanism of Mg alloy GW93 through the studies of Volta potential by Scanning Kelvin Probe Force Microscopy(SKPFM), corrosion morphology by Scanning Electron Microscope(SEM), and corrosion resistance by electrochemical tests. Results reveal that the pitting corrosion of GW93 includes three stages, first, dissolution of the second phases, followed by corrosion of Mg matrix adjacent to the dissolved second phases, and finally, propagation of corrosion pits along the depth direction of the dissolved second phases. Anodic second phases and enrichment of Clin the thick corrosion product films dominate the propagation of pitting corrosion.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号