Mechanical Properties and Microstructure of Sulfur Aluminate Cement Composites Reinforced by Multi-walled Carbon Nanotubes
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2018年第1期
论文作者:王宝民 XING Yunqing LI Jianmin
文章页码:102 - 107
摘 要:The effect of multi-walled carbon nanotubes(MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement(SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various weight contents.The results of mechanical properties of the MWCNTs/SAC composites indicated that the addition of 0.08 wt% MWCNTs can improve the SAC compressive strength, flexural strength, and bend-press ratio by 15.54%, 52.38%, and 31.30% at maximum, respectively. The degree of SAC hydration and porosity and pore size distribution of the matrix were measured by X-ray diffraction(XRD), thermal analysis(TG/DTG), and mercury intrusion porosimetry(MIP). Results show that the addition of MWCNTs in SAC composites can promote the hydration of SAC and the formation of C-S-H gel, reduce the porosity and refine the pore size distribution of the matrix. The microstructure was characterized by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). It is found that the MWCNTs have been dispersed homogeneously between the hydration products of SAC paste and act as bridges and networks between cracks and voids, which prevents the development of the cracks and transfers the load.
王宝民,XING Yunqing,LI Jianmin
School of Civil Engineering, Dalian University of Technology
摘 要:The effect of multi-walled carbon nanotubes(MWCNTs) on the mechanical properties and microstructure of sulfur aluminate cement(SAC) composites was investigated. The dispersed MWCNTs were added into SAC in various weight contents.The results of mechanical properties of the MWCNTs/SAC composites indicated that the addition of 0.08 wt% MWCNTs can improve the SAC compressive strength, flexural strength, and bend-press ratio by 15.54%, 52.38%, and 31.30% at maximum, respectively. The degree of SAC hydration and porosity and pore size distribution of the matrix were measured by X-ray diffraction(XRD), thermal analysis(TG/DTG), and mercury intrusion porosimetry(MIP). Results show that the addition of MWCNTs in SAC composites can promote the hydration of SAC and the formation of C-S-H gel, reduce the porosity and refine the pore size distribution of the matrix. The microstructure was characterized by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). It is found that the MWCNTs have been dispersed homogeneously between the hydration products of SAC paste and act as bridges and networks between cracks and voids, which prevents the development of the cracks and transfers the load.
关键词: