简介概要

Particle filter based on iterated importance density function and parallel resampling

来源期刊:中南大学学报(英文版)2015年第9期

论文作者:WU Yong WANG Jun CAO Yun-he

文章页码:3427 - 3439

Key words:particle filter; iterated importance density function; least squares estimate; parallel resampling; graphics processing unit

Abstract: The design, analysis and parallel implementation of particle filter (PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function (IIDF) was proposed, where a new term associating with the current measurement information (CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF (IPF) can be obtained. Subsequently, a parallel resampling (PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling (SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.

详情信息展示

Particle filter based on iterated importance density function and parallel resampling

WU Yong(武勇), WANG Jun(王俊), CAO Yun-he(曹运合)

(National Laboratory of Radar Signal Processing (Xidian University), Xi’an 710071, China)

Abstract:The design, analysis and parallel implementation of particle filter (PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function (IIDF) was proposed, where a new term associating with the current measurement information (CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF (IPF) can be obtained. Subsequently, a parallel resampling (PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling (SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.

Key words:particle filter; iterated importance density function; least squares estimate; parallel resampling; graphics processing unit

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号