简介概要

First-principles calculations of structural, elastic and electronic properties of(TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure

来源期刊:International Journal of Minerals Metallurgy and Materials2020年第10期

论文作者:Zhi-sheng Nong Hao-yu Wang Jing-chuan Zhu

文章页码:1405 - 1414

摘    要:To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure, we used first-principles calculations to theoretically investigate the structural, elastic, and electronic properties of this alloy at different pressures. The results show that the calculated equilibrium lattice parameters are consistent with the experimental results, and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy difference ΔE and elastic constants increase with increasing pressure. The(TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa. At high pressure, the bulk modulus B shows larger values than the shear modulus G, and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa. Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure, which results in a decrease in the total density of states and a wider electron energy level. This factor is favorable for zero resistance.

详情信息展示

First-principles calculations of structural, elastic and electronic properties of(TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure

Zhi-sheng Nong1,Hao-yu Wang1,Jing-chuan Zhu2

1. School of Materials Science and Engineering, Shenyang Aerospace University2. School of Materials Science and Engineering, Harbin Institute of Technology

摘 要:To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure, we used first-principles calculations to theoretically investigate the structural, elastic, and electronic properties of this alloy at different pressures. The results show that the calculated equilibrium lattice parameters are consistent with the experimental results, and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy difference ΔE and elastic constants increase with increasing pressure. The(TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa. At high pressure, the bulk modulus B shows larger values than the shear modulus G, and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa. Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure, which results in a decrease in the total density of states and a wider electron energy level. This factor is favorable for zero resistance.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号