Experimental investigation of subsurface damage depth of lapped optics by fluorescent method

来源期刊:中南大学学报(英文版)2018年第7期

论文作者:王洪祥 侯晶 王景贺 朱本温 张彦虎

文章页码:1678 - 1689

Key words:optics; subsurface defect; nondestructive detection; lapping; subsurface damage

Abstract: Subsurface defects were fluorescently tagged with nanoscale quantum dots and scanned layer by layer using confocal fluorescence microscopy to obtain images at various depths. Subsurface damage depths of fused silica optics were characterized quantitatively by changes in the fluorescence intensity of feature points. The fluorescence intensity vs scan depth revealed that the maximum fluorescence intensity decreases sharply when the scan depth exceeds a critical value. The subsurface damage depth could be determined by the actual embedded depth of the quantum dots. Taper polishing and magnetorheological finishing were performed under the same conditions to verify the effectiveness of the nondestructive fluorescence method. The results indicated that the quantum dots effectively tagged subsurface defects of fused-silica optics, and that the nondestructive detection method could effectively evaluate subsurface damage depths.

Cite this article as: WANG Hong-xiang, HOU Jing, WANG Jing-he, ZHU Ben-wen, ZHANG Yan-hu. Experimental investigation of subsurface damage depth of lapped optics by fluorescent method [J]. Journal of Central South University, 2018, 25(7): 1678–1689. DOI: https://doi.org/10.1007/s11771-018-3859-8.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号