简介概要

Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100℃/150 MPa

来源期刊:Acta Metallurgica Sinica2020年第3期

论文作者:Yi-Fei Li Li Wang Gong Zhang Dong-Qing Qi Kui Du Lang-Hong Lou

文章页码:446 - 458

摘    要:The influence of orientation on the stress rupture behaviors of a 3 rd-generation nickel-based single-crystal superalloy was investigated at 1100℃/150 MPa.It is found that the stress rupture anisotropy is shown at 1100℃,but not so obvious compared with that at intermediate temperatures.The [001] specimens display the longest rupture life,[111] specimens show the shortest rupture life,and [011] specimens exhibit the intermediate life.Detailed observations show that the final fracture is caused by crack initiation and propagation,and the anisotropy of three oriented specimens is related to the fracture modes,γ/γ’ microstructures,interfacial dislocation networks and cutting mechanisms in y’ phase.For [001] specimens,N-type rafted structures are formed which can well hinder the slip and climb of dislocations.Besides,the regular interfacial dislocation networks can prevent dislocations from cutting into y’ phase,leading to the improvement of the creep resistance.For [011] specimens,±45°rafted structures and irregular networks result in less strain hardening.For [111] specimens,a large number of crack propagation paths and inhomogeneous deformations caused by irregular rafted structures deteriorate the property and result in the shortest life.Furthermore,a[100] superdislocations with low mobility are widely formed in[001] and [011] specimens which suggests the low creep strain rate during steady creep stage,whereas superdislocations in[111] specimens possess high mobility,which indicates the high strain rate and corresponding poor stress rupture property.

详情信息展示

Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100℃/150 MPa

Yi-Fei Li1,2,Li Wang1,Gong Zhang1,Dong-Qing Qi1,Kui Du1,Lang-Hong Lou1

1. Institute of Metal Research,Chinese Academy of Sciences2. School of Materials Science and Engineering,University of Science and Technology of China

摘 要:The influence of orientation on the stress rupture behaviors of a 3 rd-generation nickel-based single-crystal superalloy was investigated at 1100℃/150 MPa.It is found that the stress rupture anisotropy is shown at 1100℃,but not so obvious compared with that at intermediate temperatures.The [001] specimens display the longest rupture life,[111] specimens show the shortest rupture life,and [011] specimens exhibit the intermediate life.Detailed observations show that the final fracture is caused by crack initiation and propagation,and the anisotropy of three oriented specimens is related to the fracture modes,γ/γ’ microstructures,interfacial dislocation networks and cutting mechanisms in y’ phase.For [001] specimens,N-type rafted structures are formed which can well hinder the slip and climb of dislocations.Besides,the regular interfacial dislocation networks can prevent dislocations from cutting into y’ phase,leading to the improvement of the creep resistance.For [011] specimens,±45°rafted structures and irregular networks result in less strain hardening.For [111] specimens,a large number of crack propagation paths and inhomogeneous deformations caused by irregular rafted structures deteriorate the property and result in the shortest life.Furthermore,a[100] superdislocations with low mobility are widely formed in[001] and [011] specimens which suggests the low creep strain rate during steady creep stage,whereas superdislocations in[111] specimens possess high mobility,which indicates the high strain rate and corresponding poor stress rupture property.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号