简介概要

Effects of Y2O3 on Thermal Shock of Al2O3/TiCN Composites

来源期刊:JOURNAL OF RARE EARTHS2005年第3期

论文作者:Yan Changhao Li Xikun Xiu Zhimeng SUN Xudong QIU Guanming Dai Shaojun

Key words:composite; Al2O3-30%TiCN-0.2%Y2O3; thermal shock; bending strength; work of fracture; rare earths;

Abstract: Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its microstructure and reinforced mechanism. According to SEM and calculation of thermal shock, the fractured surface of Al2O3-30%TiCN-0.2%Y2O3 composite is undulate. The residual strength of Al2O3-30%TiCN-0.2%Y2O3 is higher than Al2O3-30%TiCN at 200~800 ℃ after thermal shock. Cracks initiation resistance (R')and cracks propagation resistance (R″″)of Al2O3-30%TiCN-0.2%Y2O3 composite increases 12% and 5% respectively compared with that of Al2O3-30%TiCN. It matches with experimental results. The addition of Y2O3 forms YAG that inhibits crystal growth, and increases fracture stress, fracture toughness, cracks initiation resistance and cracks propagation resistance. Therefore, thermal shock resistance increases. The fracture work of Al2O3-30%TiCN and Al2O3-30%TiCN-0.2%Y2O3 composites are 132 and 148 J·m-2 respectively.

详情信息展示

Effects of Y2O3 on Thermal Shock of Al2O3/TiCN Composites

Yan Changhao1,Li Xikun1,Xiu Zhimeng3,SUN Xudong3,QIU Guanming4,Dai Shaojun1

(1.Nanjing University of Technology, Nanjing 210009, China;
2.Shenyang University of Science and Technology, Shenyang 110168, China;
3.Northeastern University, Shenyang 110004, China;
4.Changchun University of Science and Technology, Changchun 130022, China)

Abstract:Thermal shock resistance of Al2O3-TiCN(30%)-Y2O3(0.2%) composite was studied by hot pressing(HP) method at different temperatures. The study shows that thermal shock resistance of the material is determined by its microstructure and reinforced mechanism. According to SEM and calculation of thermal shock, the fractured surface of Al2O3-30%TiCN-0.2%Y2O3 composite is undulate. The residual strength of Al2O3-30%TiCN-0.2%Y2O3 is higher than Al2O3-30%TiCN at 200~800 ℃ after thermal shock. Cracks initiation resistance (R'')and cracks propagation resistance (R″″)of Al2O3-30%TiCN-0.2%Y2O3 composite increases 12% and 5% respectively compared with that of Al2O3-30%TiCN. It matches with experimental results. The addition of Y2O3 forms YAG that inhibits crystal growth, and increases fracture stress, fracture toughness, cracks initiation resistance and cracks propagation resistance. Therefore, thermal shock resistance increases. The fracture work of Al2O3-30%TiCN and Al2O3-30%TiCN-0.2%Y2O3 composites are 132 and 148 J·m-2 respectively.

Key words:composite; Al2O3-30%TiCN-0.2%Y2O3; thermal shock; bending strength; work of fracture; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号