简介概要

Influence of Thermal Conductivity on Interface Shape during Growth of Sapphire Crystal Using a Heat-Exchanger-Method

来源期刊:JOURNAL OF RARE EARTHS2006年增刊第1期

论文作者:Lu Chungwei Chen Jyh Chen

Key words:HEM; sapphire; single crystal growth; thermal conductivity; convexity;

Abstract: The internal radiative contributed on heat transfer will enhance the heat transport inside the crystalline phase during growth the transparent sapphire crystal using a heat-exchanger-method (HEM). The artificially enhanced thermal conductivity of the solid to include the internal radiation effect was used in the present study. Numerical simulations using FIDAP were performed to investigate the effects of the thermal conductivity on the shape of the melt-crystal interface, the temperature distribution, and the velocity distribution. Heat transfer (including radiation) from the furnace to the crucible and heat extraction from the heat exchanger can be modeled by the convection boundary conditions. In the present study, we focus on the influence of the conductivity on the shape of the melt-crystal interface. Therefore, the effect of the others growth parameters during the HEM crystal growth was neglected. For the homogenous conductivity (km=kS=k), the maximum convexity decreases as k increases and the rate of maximum convexity increases for a higher conductivity is less abrupt than for a lower conductivity. For the no homogenous conductivity (km≠kS), the higher solid's kS generates lower maximum convexity and the variation in maximum convexity was less abrupt for the different melt's km. The maximum convexity decreases slightly as the enhance conductivity of the sapphire crystal increases. The effects of the anisotropic conductivity of the sapphire crystal were also addressed. The maximum convexity of the melt-crystal interface decreases when the radial conductivity (ksr) of the crystal increases. The maximum convexity increases as the axial conductivity (ksz) of the crucible increases.

详情信息展示

Influence of Thermal Conductivity on Interface Shape during Growth of Sapphire Crystal Using a Heat-Exchanger-Method

Lu Chungwei1,Chen Jyh Chen2

(1.Department of Information Management, Jen-Teh Junior College, Hou-Lung, Miao-Li County 35664, Taiwan, China;
2.Department of Mechanical Engineering, National Central University, Chung-Li 32054, Taiwan, China)

Abstract:The internal radiative contributed on heat transfer will enhance the heat transport inside the crystalline phase during growth the transparent sapphire crystal using a heat-exchanger-method (HEM). The artificially enhanced thermal conductivity of the solid to include the internal radiation effect was used in the present study. Numerical simulations using FIDAP were performed to investigate the effects of the thermal conductivity on the shape of the melt-crystal interface, the temperature distribution, and the velocity distribution. Heat transfer (including radiation) from the furnace to the crucible and heat extraction from the heat exchanger can be modeled by the convection boundary conditions. In the present study, we focus on the influence of the conductivity on the shape of the melt-crystal interface. Therefore, the effect of the others growth parameters during the HEM crystal growth was neglected. For the homogenous conductivity (km=kS=k), the maximum convexity decreases as k increases and the rate of maximum convexity increases for a higher conductivity is less abrupt than for a lower conductivity. For the no homogenous conductivity (km≠kS), the higher solid''s kS generates lower maximum convexity and the variation in maximum convexity was less abrupt for the different melt''s km. The maximum convexity decreases slightly as the enhance conductivity of the sapphire crystal increases. The effects of the anisotropic conductivity of the sapphire crystal were also addressed. The maximum convexity of the melt-crystal interface decreases when the radial conductivity (ksr) of the crystal increases. The maximum convexity increases as the axial conductivity (ksz) of the crucible increases.

Key words:HEM; sapphire; single crystal growth; thermal conductivity; convexity;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号