钙钛矿/石墨相氮化碳复合光催化剂的研究进展
来源期刊:中国有色金属学报2021年第7期
论文作者:陈玉芳 王雪飞 白浩洋 路金伟 胡婕 黄浩
文章页码:1856 - 1869
关键词:石墨相氮化碳;钙钛矿型氧化物;复合材料;光催化
Key words:graphite phase carbon nitride; perovskite type oxide; composites; photocatalysis
摘 要:光催化技术是解决当今社会能源短缺、水体污染等问题的有效手段。综述了近几年钙钛矿(ABO3)/石墨相氮化碳(g-C3N4)复合光催化剂的最新研究进展。归纳总结了包括原位水热生长法及热溶剂法、简单煅烧法、物理混合法等几种该类复合材料的制备方法,分类阐述当B位是Ti或Ta以及A位为La时,其在光催化分解水制氢以及有机污染物降解方面的研究现状,解析此类复合材料具有良好光催化性能的原因,以及在不同类型异质结下的光催化作用机理。提出目前关于ABO3/g-C3N4复合光催化剂的研究中存在的问题和当前该领域的发展趋势。
Abstract: The development of industry and technology has caused energetic and environmental problems, such as energy shortages and water pollution in today’s society. The photocatalytic technology is an effective means to solve these problems, and photocatalyst is one of the main factors affecting photocatalytic technology. The graphite phase carbon nitride(g-C3N4) plays an important role in the field of photocatalysis because of its wide source of raw materials, non-toxicity, stable chemical properties, and relatively narrow band gap (2.7 eV) for visible light response. Perovskite type oxide(ABO3) has a unique stable structure and excellent electronic configuration. The existence of non-stoichiometric oxygen vacancies will provide more reaction sites for photocatalytic reactions. The recent advances of ABO3/g-C3N4 composite in photocatalytic hydrogen evolution and organic pollutant degradation were reviewed. The reason for the composite with good photocatalytic performance was analyzed. Finally, the challenges remaining to be solved were summarized, and the prospects of ABO3/g-C3N4 for further advances in photocatalysis were also presented.
DOI: 10.11817/j.ysxb.1004.0609.2021-36651
陈玉芳1,王雪飞2,白浩洋2,路金伟2,胡 婕1, 2,黄 浩1
(1. 燕山大学 亚稳材料制备技术与科学国家重点实验室,秦皇岛 066004;
2. 燕山大学 环境与化学工程学院 河北省应用化学重点实验室,秦皇岛 066004)
摘 要:光催化技术是解决当今社会能源短缺、水体污染等问题的有效手段。综述了近几年钙钛矿(ABO3)/石墨相氮化碳(g-C3N4)复合光催化剂的最新研究进展。归纳总结了包括原位水热生长法及热溶剂法、简单煅烧法、物理混合法等几种该类复合材料的制备方法,分类阐述当B位是Ti或Ta以及A位为La时,其在光催化分解水制氢以及有机污染物降解方面的研究现状,解析此类复合材料具有良好光催化性能的原因,以及在不同类型异质结下的光催化作用机理。提出目前关于ABO3/g-C3N4复合光催化剂的研究中存在的问题和当前该领域的发展趋势。
关键词:石墨相氮化碳;钙钛矿型氧化物;复合材料;光催化
文章编号:1004-0609(2021)-07-1856-13 中图分类号:O643 文献标志码:A
引文格式:陈玉芳, 王雪飞, 白浩洋, 等. 钙钛矿/石墨相氮化碳复合光催化剂的研究进展[J]. 中国有色金属学报, 2021, 31(7): 1856-1868. DOI: 10.11817/j.ysxb.1004.0609.2021-36651
CHEN Yu-fang, WANG Xue-fei, BAI Hao-yang, et al. Progress in photocatalytic properties of perovskite/graphite phase carbon nitride composites[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1856-1868. DOI: 10.11817/j.ysxb.1004.0609.2021-36651
21世纪的科技、经济以及工业都在稳步发展,与此同时,各行各业对于能源的需求及消耗量也在增加[1]。现在使用的大部分能源主要是石油、煤炭等化石类的能源,然而这些比较常见的能源具有不可再生和数量较少等不足,产生了能源短缺的问题,而在能源的使用与开采过程中出现了一系列环境污染问题[2-3],因此,要想办法找出生产清洁能源和污染物降解等的有效方法,研究学者们逐渐开始研究取之不尽、用之不竭的太阳光能,其可以直接开发和利用、清洁、丰富、长久等的特点对于解决能源及环境问题具有重大意义[4]。因而人们提出了光催化技术。光催化技术是一种环保、无毒害、可持续的技术,而作为光催化技术的主要因素之一的光催化剂的发展与应用就成了人们探索的问题。基于半导体材料的光催化剂在利用太阳光能解决能源和环境问题方面有着巨大的潜力[5-6]。
自从FUJISHIMA等[7]发现,可以利用TiO2光催化析氢以来,光催化材料一直是国内外研究的热点。到目前为止,尽管已经研究了许多令人印象深刻的材料(例如TiO2、CdS和Bi2WO6),但其催化效率仍然不能令人满意[8-10]。这促使许多研究者继续寻找低成本、稳定和有效的光催化剂。在各种半导体光催化剂中,g-C3N4有着诸如制备成本低廉、环境无毒无害且化学性质和热学性质比较稳定等优点,具有相对较窄的带隙(2.7 eV),因而其在光催化领域有着广阔的应用前景[11-12]。但g-C3N4仍然存在不少的缺点,如比表面积低、光生载流子复合率高、可见光响应范围窄等,因而限制了其在光催化领域的广泛应用[13-14]。为了克服这些局限性并提高g-C3N4的光催化活性,人们想了很多办法,包括形态控制[15-16]、金属或非金属元素掺杂[17-18]、光敏剂敏化[19-20]、与其他半导体复合构建异质结[21-22]。
钙钛矿型氧化物(ABO3)具有较宽的光响应范围、稳定的晶体结构、优异的电子构型、良好的光催化性能等优点使其在光催化领域受到极大的关注[23-24],但是它仍然存在着诸如导电性能较差、电子转移效率较差、比表面积比较小等的缺点,从而限制了其光催化活性[25]。将g-C3N4与ABO3复合形成的复合材料相比于单一的g-C3N4、ABO3响应范围扩大,提高了对太阳能的利用率;且由于复合之后形成异质结,促进了光生电子-空穴对的分离,因此,复合材料具有优异的光催化性能。本文作者以ABO3/g-C3N4作为光催化剂,详细综述了近年来其光催化析氢及有机污染物降解的研究进展,系统分析了ABO3/g-C3N4复合材料光催化性能提高的原因,提出了ABO3/g-C3N4复合材料光催化研究中存在的一些问题,最后对未来的研究做出了合理展望。
1 钙钛矿/石墨相氮化碳复合光催化剂的制备
近年来,钙钛矿/石墨相氮化碳复合光催化剂的应用逐渐增多,而不同的结合方式会对其性能有一定的影响。研究者们陆续采用多种方法制备出了此类复合光催化剂,常用的有原位水热生长法、简单煅烧法、热溶剂法以及物理混合等方法。
1.1 原位水热生长法及热溶剂法
原位水热生长法是在密闭的水热反应釜中,将g-C3N4和ABO3以水为溶剂进行混合,通过加热使反应釜内部产生压强,溶液中的两种物质发生碰撞,形成晶核,最终长成晶粒[26];而溶剂热法以有机溶剂作为反应介质[27]。使用原位水热生长法及热溶剂法能够使材料均匀分散,然而会引入杂质残留物且晶粒尺寸难以精确调控。
1.2 简单煅烧法
简单煅烧法是经过高温反应直接合成ABO3/g-C3N4的一种方法。XIAN等[28]以三聚氰胺为前驱体在管式炉中煅烧制得g-C3N4。接着将g-C3N4与BaTiO3混合在300 ℃下煅烧1 h得到BaTiO3/g-C3N4复合材料。ISMAEL等[29]直接用凝胶溶胶法制备出的LaFeO3与三聚氰胺混合,在520 ℃高温煅烧4 h,制备出LaFeO3/g-C3N4复合材料。简单煅烧法优势在于操作简单,无需繁琐的步骤,有利于规模化工业生产且形态易控,但制备材料的分散度欠佳。
1.3 物理混合法
物理混合法是指在固态或液态下对两种或多种材料进行超声混合或机械混合的方法。KIM等[30]将合成的g-C3N4与NaTaO3粉末通过球磨法在50 mL乙醇和氧化锆球中以200 r/min的速度混合24 h。球磨后,通过蒸发收集产物,并在80 ℃的烘箱中干燥24 h得到NaTaO3/g-C3N4复合材料。相比于原位水热生长法及热溶剂法,物理混合法制备装置简单,操作更加简便,但难以在材料内部形成均匀的异质结。
2 钙钛矿/石墨相氮化碳复合光催化剂的分类
钙钛矿型氧化物ABO3作为传统的光催化剂已经广泛应用于光催化析氢[31-32]及有机污染物的降解[33-34]。ABO3型钙钛矿的结构如图1(a)所示,A位一般为La、Sr、Ca、K等碱金属或稀土元素,主要起稳定钙钛矿的骨架结构和调变B位离子的作用;B位通常是Fe、Mn、Ni、Co、Ta等过渡金属,其决定了催化剂的反应活性。钙钛矿作为光催化剂存在的缺陷是:产生的光生电子和空穴很容易复合,而使其催化活性降低;且钙钛矿纳米粒子易团聚,使催化剂比表面积大大降低,活性位点减少。
g-C3N4是一种黄色粉末,具有类似石墨的层状结构,层与层之间以范德华力结合。在g-C3N4结构中,C、N以sp2杂化,并以σ键连接,剩下的电子形成弧电子对,以类似苯环的π键连接,通过末端的N原子相连构成七嗪环或三嗪环[36](如图1(b)和1(c)所示)。g-C3N4在常温常压下具有良好的热稳定性和化学稳定性,因此,近年来作为光催化剂得到了人们的广泛研究[38-39]。但由于g-C3N4的光吸收范围不够宽,光生载流子分离及迁移速率慢且比表面积小等原因,使其光催化性能不够理想[40]。
图1 ABO3型钙钛矿结构[35]以及g-C3N4七嗪环和三嗪环的结构[37]示意图
Fig. 1 Schematic diagrams of ABO3 perovskite structure[35](a) and tri-s-triazine(b) and s-triazine(c) structures of g-C3N4[37]
鉴于上述分析的石墨相氮化碳和钙钛矿光催化剂存在的优缺点,人们尝试将这两种半导体复合构建异质结,以期获得具有较高性能的光催化剂。g-C3N4与ABO3复合之后形成异质结,能有效提高对太阳能的利用率;同时促进光生电子-空穴对的分离,从而显著提高光催化性能。目前,已有许多关于ABO3/g-C3N4复合材料光催化析氢及有机污染物降解方面的报道(见表1[26-28, 41-55])。
2.1 ATiO3/g-C3N4(A:Ba、Sr、Co、La、Ca等)复合光催化剂
钛酸类钙钛矿的化学式是ATiO3,A位可以是Ba、Sr、Co、La、Ca等。这种钙钛矿氧化还原电位较合适,性质较稳定,具有较强的抗光腐蚀能力,因此,成了近年来研究的热点,广泛应用于光催化析氢[56-57]、有机污染物降解等方面[58-59]。单一钛酸类钙钛矿型氧化物产生的光生电子-空穴对很容易再次复合,因此,会影响其光催化性能。ATiO3与g-C3N4复合形成异质结后,光催化性能明显改善。
XIAO等[26]通过原位水热生长法制备出了不同质量比的SrTiO3/g-C3N4复合光催化剂,并在可见光下降解四环素类抗生素。20% SrTiO3/g-C3N4复合光催化剂对于四环素的降解效率为54%,是g-C3N4的2倍,是SrTiO3光催化剂的6倍。然而,过量的g-C3N4会使电荷分离能力减弱,导致其催化性能的降低。KONSTAS等[60]采用超声混合法将SrTiO3球形颗粒成功装载到g-C3N4上。研究表明,20% SrTiO3/g-C3N4复合材料在模拟太阳光下降解亚甲基蓝染料的效率最高,可达95%。
对于SrTiO3/g-C3N4复合光催化剂,除了对光催化降解的研究,也有许多关于光催化析氢方面的报道。LEE等[41]通过热处理工艺合成了Pt/(SrTiO3/ g-C3N4)复合材料光催化剂。Pt/(SrTiO3/g-C3N4)催化剂中的Pt在g-C3N4和SrTiO3的表面上分离,采用了4种光生电子传递路径,包括g-C3N4→Pt→H2、SrTiO3→Pt→H2、g-C3N4→SrTiO3→H2、g-C3N4→ SrTiO3→Pt→H2。因而,该复合材料表现出较高的光催化活性,析氢速率可达552 μmol/(h·g)。
钛酸钡(BaTiO3)属于铁电材料,禁带宽度约为3.2 eV,会自发产生极化的电场,可以促进光生载流子的分离,因此除了SrTiO3,BaTiO3也广泛应用于与g-C3N4复合的光催化研究中。YANG等[61]将g-C3N4和BaTiO3进行简单混合煅烧成功制备了BaTiO3/g-C3N4光催化剂。g-C3N4和BaTiO3之间的协同效应和铁电极化是光催化活性增强的主要原因。除了g-C3N4和BaTiO3直接耦合,还可以在两者之间添加一些介质,来增强光催化活性。WU等[42]以Au粒子为电子介质,将g-C3N4(CN)与BaTiO3(BTO)进行耦合,制备出Z型异质结BaTiO3/Au/g-C3N4光催化剂。如图2所示[42],BaTiO3表现为厚度5~15 nm纳米线形态,g-C3N4为二维层状结构,负载有椭圆形Au纳米粒子的BaTiO3纳米线均匀地附着在层状g-C3N4上。Au粒子除了充当电子介质外,还可以通过表面等离子体共振效应吸收可见光,进而将热电子传输至g-C3N4的CB中参与光催化反应。
表1 ABO3/g-C3N4复合光催化剂
Table 1 ABO3/g-C3N4 composite photocatalyst
图2 BTO、CN和BTO/Au/CN的金相组织
Fig. 2 Metallographic structures of BTO and CN and BTO/Au/CN
此外,CoTiO3与g-C3N4复合构建异质结也具有良好的光催化活性。叶荣钦[43]首先运用溶胶-凝胶法制备了CoTiO3纳米棒,然后使g-C3N4纳米片原位生长在CoTiO3上,最终得到CoTiO3/g-C3N4复合光催化剂。CoTiO3/g-C3N4复合材料的析氢速 率可达858 μmol/(h·g)。主要原因是CoTiO3与g-C3N4纳米片在界面处紧密接触,形成Co—O—N和Ti—O—N键。
2.2 ATaO3/g-C3N4(A:Na、K等)复合光催化剂
自KATO等[62]证实NaTaO3比TiO2有更高的光催化活性,NaTaO3作为一种有前途的光催化剂被广泛研究[63-64]。当B位元素为Ta时,此类钙钛矿禁带宽度较大(3.6~4.0 eV)[65-66],只能在太阳光谱的紫外光区域发生光响应,因而,ATaO3的光吸收利用率较低。为了扩展ATaO3的光响应范围,提高其光催化活性,需对其改性修饰,而与其他半导体构建异质结是改善其光催化活性的有效手段之一。
廖金龙等[27]通过一步热溶剂法制备了NaTaO3/g-C3N4异质结复合光催化剂,用于在可见光下降解罗丹明B。实验发现,与NaTaO3相比,NaTaO3/g-C3N4的吸收带边缘发生红移,禁带宽度变窄,光响应范围扩大,对光的利用率增加,从而光催化活性得到了提高。TANG等[51]将Ag纳米粒子通过光还原法沉积在NaTaO3/g-C3N4的表面,成功地合成了三元Ag/NaTaO3/g-C3N4光催化剂。Ag纳米颗粒可通过表面等离子体激元共振(SPR)改善可见光响应,充当g-C3N4和NaTaO3之间电荷传输的桥梁。Ag纳米粒子上的光生电子可以转移到g-C3N4、NaTaO3的导带中,这使得Ag/NaTaO3/ g-C3N4上的光生电子密度大大高于NaTaO3/ g-C3N4,进而显著提高了该三元催化剂的光催化活性。
在钽酸类光催化剂中,除了NaTaO3,KTaO3也被证明是一种有前途的光催化材料[67-68]。YONG等[69]采用简单的超声分散法合成了KTaO3/g-C3N4光催化剂。如图3所示,KTaO3只能在紫外光区域发生响应,g-C3N4的光响应范围也局限在可见光区域,而KTaO3/g-C3N4可同时在紫外和可见光区域发生响应,光响应范围扩大,因而光催化性能得到了提升。
图3 KTO(KTaO3)、g-C3N4和KTaO3/g-C3N4的UV-Vis DRS谱[69]
Fig. 3 UV-Vis DRS spectra of KTO(KTaO3), g-C3N4 and KTaO3/g-C3N4[69]
2.3 LaBO3/g-C3N4(B:Mn、Fe、Co、Ni等)复合光催化剂
在LaBO3(B:Mn、Fe、Co、Ni等)中,Mn、Fe、Co、Ni在元素周期表中处于同一周期,同为过渡元素。LaBO3的光催化原理是:O的2p 轨道构成价带(VB),B位离子的3d轨道构成导带(CB),在光照下,VB上的电子受到激发会跃迁到较高能级的CB上,从而产生光生电子-空穴对,使表面吸附氧转化为高活性的·OH和·O2-等自由基,进而与染料分子发生氧化还原反应,将其降解为无机小分子。由于LaBO3中存在一定量的氧空位,氧空位浓度的增加有利于催化剂表面吸附氧的增加。吸附氧在光催化反应中是活性物种,它能有效地阻止光生电 子-空穴对的复合,提高对光能的利用率。
GUO等[70]通过表面混合加热和沉淀法制备了Z型LaCoO3/g-C3N4光催化剂。LaCoO3/g-C3N4异质结在四环素(TC)的降解中表现出出色的光催化性能和稳定性,TC的光催化降解率高达92%。这项工作为制备高效光催化剂提供一种简单有效、节能环保的方法。LUO等[44]提出一种简便的混合煅烧方法,将g-C3N4纳米片与LaCoO3纳米粒子结合在一起,其中无贵金属LaCoO3作为有效的助催化剂在g-C3N4上原位生长,并紧密固定在g-C3N4纳米片的表面上。LaCoO3助催化剂可有效捕获g-C3N4上生成的电子,阻碍光生电子-空穴对的重组。JIN等[71]采用一步浸渍法成功地制备了一系列不同g-C3N4含量的Z方案LaCoO3/g-C3N4异质结光催化剂。LaCoO3/g-C3N4(60%)复合光催化剂在可见光下对苯酚的降解具有最高的光催化活性,照射5 h后苯酚的降解率为85%。高的光催化活性主要归因于Z型LaCoO3/g-C3N4异质结构的高电荷载流子分离效率以及较好的分散性。LaCoO3/g-C3N4降解苯酚的主要步骤如式(1)~(5)所示[71]:
LaCoO3/g-C3N4+hv(νis)→LaCoO3(e+h+)/g-C3N4(e+h+) (1)
H2O+h+(LaCoO3)→·OH+H+ (2)
O2+e(g-C3N4)→·O2- (3)
·O2-+Penol→by-products (4)
·OH+Penol→by-products (5)
镍酸镧(LaNiO3)作为天然钙钛矿结构的p型半导体,具有适当的带隙、出色的电磁性,被证明是一种有吸引力的光催化剂。ZHOU等[45]通过简单的热处理方法有效地构建了Z型LaNiO3/g-C3N4异质结光催化剂。如图4(a)和(b)所示,优化的LaNiO3 (30%)/g-C3N4复合材料(LaNiO3占总质量的30%)在可见光照射下表现出显着的四环素降解光催化活性(0.00282 min-1)。除了LaCoO3和LaNiO3,LUO等[46]尝试把LaMnO3引入g-C3N4中,构建了直接Z方案LaMnO3/g-C3N4光催化剂,LaMnO3/g-C3N4降解四环素(TC)的光降解率为61.4%。
铁酸镧(LaFeO3)属于窄带隙半导体(约为2.0 eV),有利于光照下光生电子的跃迁。2017年,ACHARYA等[72]采用机械混合方法制备了LaFeO3/g-C3N4,其催化活性在可见光照射下为1152 μmol/(h·g)。ISMAEL等[29]通过简单的煅烧法合成了LaFeO3/g-C3N4光催化剂,用于降解罗丹明B和4-氯苯酚。当LaFeO3质量分数为1.9%时,光催化活性最强。然而,进一步增加LaFeO3的含量,光催化活性下降。这是由于复合材料中LaFeO3的比例较高,导致光生电子从g-C3N4的导带到LaFeO3的电子转移效率降低,从而导致光催化活性下降。另一个原因是LaFeO3在g-C3N4的表面积累,使光生电子-空穴对之间的复合增加,进而抑制了光催化活性。WU等[47]采用准聚合煅烧的方法构建了n型g-C3N4纳米片包覆的p型LaFeO3微球复合材料。LaFeO3/g-C3N4复合光催化剂在可见光照射下对亮蓝的降解表现出更高的光催化活性,分别为纯g-C3N4、LaFeO3的16.9倍和7.8倍。实验结果表明,LaFeO3/g-C3N4优异的光催化降解活性归因于h+、·O2-和·OH的综合作用。
尽管已经有很多关于LaFeO3/g-C3N4二元光催化剂的报道,但LaFeO3/g-C3N4对光子的利用率和光催化活性仍不够让人满意。故而,有关LaFeO3/g-C3N4掺杂的三元系统引起了人们的注意。GAO等[48]通过水热合成法制备了具有增强活性的等离子Z方案三组分光催化剂LaFeO3/Ag/g-C3N4 (如图5所示),用于在可见光下降解罗丹明B和苯酚。Ag纳米粒子的等离子体共振效应,可有效使LaFeO3/g-C3N4的光响应范围扩大,同时,g-C3N4、Ag和LaFeO3的紧密界面相互作用以及金属Ag局部电场驱动的电荷转移可以有效改善g-C3N4和LaFeO3光生电子-空穴对的分离,从而增强光催化活性。
3 钙钛矿/石墨相氮化碳复合光催化剂的催化机理
钙钛矿/石墨相氮化碳复合光催化剂属于半导体-半导体异质结结构,这样的结构能够有效地促进光生电子-空穴对的分离以达到提升催化效率的目的[73]。根据两种半导体光生电子及光生空穴的转移方式可将异质结分为I型、II型以及Z型。
3.1 I型、II型异质结
图4 可见光照射下降解TC的光催化活性、拟一级动力学曲线[45]
Fig. 4 Photocatalytic activities(a) and pseudo-first-order kinetics curves(b) for degradation of TC solution over as-obtained samples under visible light irradiation[45]
图5 LaFeO3/Ag/g-C3N4的合成路线示意图[48]
Fig. 5 Schematic diagram of synthetic route of LaFeO3/Ag/g-C3N4(c) [48]
对于两种半导体A和B,I型异质结中半导体A的VB低于半导体B,而其CB高于B。光照时,在势差作用下A和B产生的电子都向B的CB转移,同时A和B产生的h+均向B的VB转移,这样在B上获得更多电子和h+,此时形成了I型异质结。这种异质结是由于一种材料的CB与VB均介于另一种材料的CB与VB之间而形成的,这种匹配形式并不能达到良好分离光生电子-空穴对的目的。II型异质结是光照时A和B产生的电子都向A的CB转移,同时h+均向B的VB转移,这就使得电子和h+分别在两种半导体上富集,这种异质结既增加了参与还原反应的电子数,又能形成载流子的空间隔离,从而有效抑制电子和空穴复合。RODRIGUEZ等[74]合成了LaMO3/g-C3N4(M:Co,Mn,Fe)复合材料,其能带结构如图6所示。显然,LaFeO3/g-C3N4复合材料为II型异质结构,而LaCoO3/g-C3N4、LaMnO3/g-C3N4复合材料为I型异质结构。LaFeO3/g-C3N4通过形成II型异质结构可减少电荷的重组并增加光活性。与LaFeO3/g-C3N4光催化剂相比,LaMnO3/g-C3N4和LaCoO3/g-C3N4复合材料的光催化活性较低,这与电荷迁移速率不高的I型异质结构有关,导致电荷在钙钛矿中积累,从而限制了光催化性能。
图6 LaMO3/g-C3N4(M:Co,Mn,Fe)复合材料的能带示意图[74]
Fig. 6 Schematic diagram of energy band of LaMO3/g- C3N4(M: Co, Mn, Fe) composite[74]
3.2 Z型异质结
Z型异质结构较为特殊,即一种半导体材料CB上的电子与另一种半导体材料VB上h+结合,而它们各自VB和CB上留下的h+与电子分别发生氧化还原反应。其光催化机理如图7所示,由于g-C3N4的VB值(1.56 eV)低于·OH/OH-(1.99 eV)和·OH/H2O (2.68 eV),因而无法将H2O分子和OH- 离子氧化为·OH;且LaNiO3的CB值(0.23 eV)高于O2/·O2- (-0.33 eV),故无法将O2还原为·O2-。当能级相差较小的g-C3N4价带上的h+与LaNiO3导带上的电子结合后,在g-C3N4的CB上发生还原反应,同时在LaNiO3的VB上发生氧化反应。因此,Z型光催化体系能够抑制光生电子-空穴对复合,并保证电子和h+具有较强的还原和氧化能力,能够更好地提高光催化效率。
图7 在可见光照射下LaNiO3/g-C3N4降解TC的光催化机理[45]
Fig. 7 Proposed photocatalytic mechanism for photo- degradation of TC over LaNiO3/g-C3N4 hybrid under visible light irradiation[45]
不难发现,II型异质结和Z型异质结中两种半导体能带相对位置相同。可以通过自由基捕获实验或电子自旋共振(ESR)分析测试的结果,确定光催化过程中起作用的活性物种,然后将标准氧化还原电位·OH/OH-与两种半导体VB的值进行比较;将O2/·O2-与两种半导体CB的值进行比较,判断能否在CB位置产生·O2-,在VB位置产生·OH。从而确定半导体异质结的类型。
I型异质结由于电子和h+均转移至同一种半导体,故复合率较高。II型异质结中两种半导体同时被激发,电子和h+分别转移至不同的半导体,产生空间隔离,因而可以有效抑制复合并提供更多的光生载流子。但在I型、II型异质结中,电子总是向较低位置的CB转移,降低了电子的还原能力。而Z型异质结中,由于在较低位置的CB上的电子与在较高位置VB上的h+复合,因而它们各自留在较高CB位置的电子发生还原反应,留在较低VB位置的h+发生氧化反应,这样既能使电子和h+产生空间隔离,又保证了电子具有较强的还原能力。
4 总结与展望
本文简要介绍了ABO3/g-C3N4复合材料的制备方法、研究现状以及光催化机理,通过对复合材料中ABO3的B位是Ti、Ta以及A位为La的情况进行讨论,将近几年内ABO3/g-C3N4复合材料在光催化析氢以及有机污染物降解方面的研究进展进行了总结。虽然对ABO3/g-C3N4复合光催化剂的研究已经获得了丰硕的成果,但仍然存在一些问题需要解决:1) ABO3/g-C3N4复合光催化剂在制备过程中,存在ABO3与g-C3N4复合不均匀的问题;2) 目前对ABO3/g-C3N4复合光催化剂异质结构的设计合成,主要是基于能带匹配原则,而没有过多考虑界面接触程度以及有效接触面积对光催化性能的影响。
光催化技术的终极目标是解决能源和环境问题,因而规模化制备出物相均匀、具有良好的光催化活性且稳定的ABO3/g-C3N4复合光催化剂并投入到实际应用,是当前该领域的发展趋势。相信随着未来对该类催化剂催化机理的深入认识以及合成技术的快速发展,此类催化剂在光催化技术领域将具有很好的应用前景。
REFERENCES
[1] JOURSHABANI M, LEE B K, SHARIATINIA Z. From traditional strategies to Z-scheme configuration in graphitic carbon nitride photocatalysts: Recent progress and future challenges[J]. Applied Catalysis B (Environmental), 2020, 276: 119157.
[2] LI Hai-jin, TU Wen-guang, ZHOU Yong, et al. Z-Scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges[J]. Advanced Science, 2016, 3(11): 1500389.
[3] 葛 明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
GE Ming, LI Zhen-lu. All-solid-state Z-scheme photocatalytic systems based on silver-containing semiconductor materials[J]. Progress in Chemistry, 2017, 29(8): 846-858.
[4] ZHOU Chao, SHI Run, WATERHOUSE G I N, et al. Recent advances in niobium-based semiconductors for solar hydrogen production[J]. Coordination Chemistry Reviews, 2020, 419: 213399.
[5] RAHMAN Q I, ALI A, AHMAD N, et al. Synthesis and characterization of CuO rods for enhanced visible light driven dye degradation[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7716-7723.
[6] TASLEEM S, TAHIR M, ZAKARIA Z Y. Fabricating structured 2D Ti3AlC2 MAX dispersed TiO2 heterostructure with Ni2P as a cocatalyst for efficient photocatalytic H2 production[J]. Journal of Alloys and Compounds, 2020, 842: 155752.
[7] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.
[8] LIU Gang, CUI Peng, LIU Xin-mei, et al. A facile preparation strategy for Bi2O4/Bi2WO6 heterojunction with excellent visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 2020, 290: 121542.
[9] LIU Yan-ping, SHEN Shi-jie, ZHANG Ji-tang, et al. Cu2-xSe/CdS composite photocatalyst with enhanced visible light photocatalysis activity[J]. Applied Surface Science, 2019, 478: 762-769.
[10] GUO Qing, ZHOU Chuan-yao, MA Zhi-bo, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Advanced Materials, 2019, 31(50): 1901997.
[11] 王亦清, 沈少华. 非金属掺杂石墨相氮化碳光催化的研究进展与展望[J]. 物理化学学报, 2020, 36(3): 1905080.
WANG Yi-qing, SHEN Shao-hua. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances[J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905080.
[12] CUI Zi-ming, YANG Hua, ZHAO Xin-xin. Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction nanocomposites[J]. Materials Science & Engineering B, 2018, 229: 160-172.
[13] XIAO Xin, WANG Yi-hui, BO Qiu, et al. One-step preparation of sulfur-doped porous g-C3N4 for enhanced visible light photocatalytic performance[J]. Dalton Transactions, 2020, 49(24): 8041-8050.
[14] LIU Xue-cheng, ZHANG Qian, LIANG Li-wei, et al. In situ growing of CoO nanoparticles on g-C3N4 composites with highly improved photocatalytic activity for hydrogen evolution[J]. Royal Society of Chemistry, 2019, 6(7): 190433.
[15] HE Fang, WANG Zhen-xing, LI Yue-xiang, et al. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts[J]. Applied Catalysis B (Environmental), 2020, 269: 118828.
[16] JIANG Run-ren, LU Guang-hua, ZHOU Ran-ran, et al. Switching g-C3N4 morphology from double-walled to single-walled microtubes induced high photocatalytic H2-production performance[J]. Journal of Alloys and Compounds, 2020, 820: 153166.
[17] ZHANG Ruo-yu, NIU Si-ying, ZHANG Xing-chao, et al. Combination of experimental and theoretical investigation on Ti-doped g-C3N4 with improved photo-catalytic activity[J]. Applied Surface Science, 2019, 489: 427-434.
[18] Lü Hai-qin, HUANG Ying, KOODALI R T, et al. Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12656-12667.
[19] LIU Yan-fei, HE Mao-fen, GUO Rui, et al. Ultrastable metal-free near-infrared-driven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with chlorin e6[J]. Applied Catalysis B (Environmental), 2020, 260: 118137.
[20] XU Ji-xiang, QI Yin-hong, WANG Wen-bo, et al. Montmorillonite-hybridized g-C3N4 composite modified by NiCoP cocatalyst for efficient visible-light-driven photocatalytic hydrogen evolution by dye-sensitization[J]. International Journal of Hydrogen Energy, 2019, 44(8): 4114-4122.
[21] JIA Jia, SUN Wen-juan, ZHANG Qi-qi, et al. Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation[J]. Applied Catalysis B (Environmental), 2020, 261: 118249.
[22] CHEN Peng-fei, XING Ping-xing, CHEN Zhi-qiang, et al. In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation[J]. Journal of Colloid and Interface Science, 2019, 534: 163-171.
[23] KHAN I, SUN Ning, WANG Ying, et al. Synthesis of SnO2/ yolk-shell LaFeO3 nanocomposites as efficient visible-light photocatalysts for 2,4-dichlorophenol degradation[J]. Materials Research Bulletin, 2020, 127: 110857.
[24] ZHANG Dong-ming, CHEN Ming-peng, ZOU Hai-yuan, et al. Microwave-assisted synthesis of porous and hollow α-Fe2O3/LaFeO3 nanostructures for acetone gas sensing as well as photocatalytic degradation of methylene blue[J]. Nanotechnology, 2020, 31(21): 215601.
[25] JAYAPANDI S, LAKSHMI D, PREMKUMAR S, et al. Augmented photocatalytic and electrochemical activities of Ag tailored LaCoO3 perovskite semiconductor[J]. Materials Letters, 2018, 218: 205-208.
[26] XIAO Fei-yu, XU Jin-mei, CAO Li-li, et al. In situ hydrothermal fabrication of visible light-driven g-C3N4/ SrTiO3 composite for photocatalytic degradation of TC[J]. Environmental Science and Pollution Research, 2020, 27(6): 5788-5796.
[27] 廖金龙, 朱曜峰. g-C3N4/NaTaO3复合材料的制备及可见光催化性能[J]. 浙江理工大学学报, 2019, 41(3): 319-326.
LIAO Jin-long, ZHU Yao-feng. Preparation and visible-light photocatalytic properties of g-C3N4/NaTaO3 composites[J]. Journal of Zhejiang Sci-Tech University, 2019, 41(3): 319-326.
[28] XIAN T, YANG H, DI L J, et al. Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation[J]. Journal of Alloys and Compounds, 2015, 622: 1098-1104.
[29] ISMAEL M, WU Ying. A facile synthesis method for fabrication of LaFeO3/g-C3N4 nanocomposite as efficient visible-light-driven photocatalyst for photodegradation of RhB and 4-CP[J]. New Journal of Chemistry, 2019, 43(35): 13783-13793.
[30] KIM T H, JO Y H, LEE S W, ADHIKARI R, et al. Synthesis of g-C3N4/NaTaO3 hybrid composite photocatalysts and their photocatalytic activity under simulated solar light irradiation[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(9): 7125-7129.
[31] KALAISELVI C R, RAVI P, SENTHIL T S, et al. Synthesis of Ag and N doped potassium tantalate perovskite nanocubes for enhanced photocatalytic hydrogen evolution[J]. Materials Letters, 2020, 275: 128166.
[32] DING Ling, SHEN Chen-yang, ZHAO Yi, et al. CsPbBr3 nanocrystals glass facilitated with Zn ions for photocatalytic hydrogen production via H2O splitting[J]. Molecular Catalysis, 2020, 483: 110764.
[33] YAO Shu-yang, ZHENG Rui-fen, LI Rong, et al. LaCoO3 acts as a high-efficiency co-catalyst for enhancing visible- light-driven tetracycline degradation of BiOI[J]. Journal American Ceramic Society, 2020, 103(3): 1709-1721.
[34] YAO Shu-yang, WU Jia-ming, LI Wen, et al. LaCoO3 co-catalyst modified Ag2CrO4 for improved visible-light- driven photocatalytic degradation of tetracycline[J]. Separation and Purification Technology, 2019, 227: 115691.
[35] 拓 凯, 张 朋, 王 利, 等. 钙钛矿催化剂用于氨选择性还原氮氧化物的研究进展[J]. 华中农业大学学报, 2020, 39(5): 26-34.
TUO Kai, ZHANG Peng, WANG Li, et al. Research progress of perovskite catalysts for selective reduction of nitrogen oxides by ammonia[J]. Journal of Huazhong Agricultural University, 2020, 39(5): 26-34.
[36] 陈婷婷. g-C3N4和其复合材料的制备及其性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 1-85.
CHEN Ting-ting. Preparation and properties of g-C3N4 and its composites[D]. Harbin: Harbin Engineering University, 2017: 1-85.
[37] 徐建华, 谈玲华, 寇 波, 等. 类石墨相C3N4光催化剂改性研究[J]. 化学进展, 2016, 28(1): 131-148.
XU Jian-hua, TAN Ling-hua, KOU Bo, et al. Modification of graphtic carbon nitride photocatalyst[J]. Progress in Chemistry, 2016, 28(1): 131-148.
[38] CHEN Lei, XU Yi-ming, YANG Zhi, et al. Cobalt(Ⅱ)-based open-framework systems constructed on g-C3N4 for extraordinary enhancing photocatalytic hydrogen evolution[J]. Applied Catalysis B (Environmental), 2020, 277: 119207.
[39] WU Jiao-jiao, ZHANG Yi-fan, ZHOU Jun-shuai, et al. Uniformly assembling n-type metal oxide nanostructures (TiO2 nanoparticles and SnO2 nanowires) onto P doped g-C3N4 nanosheets for efficient photocatalytic water splitting[J]. Applied Catalysis B (Environmental), 2020, 278: 119301.
[40] LI Yun-feng, ZHOU Ming-hua, CHENG Bei, et al. Recent advances in g-C3N4-based heterojunction photocatalysts[J]. Journal of Materials Science & Technology, 2020, 56: 1-17.
[41] LEE J T, CHEN Ya-ju, SU E C, et al. Synthesis of solar-light responsive Pt/g-C3N4/SrTiO3 composite for improved hydrogen production: investigation of Pt/g-C3N4/SrTiO3 synthetic sequences[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21413-21423.
[42] WU Mo-qing, DING Tong, WANG Ya-ting, et al. Rational construction of plasmon Au assisted ferroelectric-BaTiO3/ Au/g-C3N4 Z-scheme system for efficient photocatalysis[J]. Catalysis Today, 2020, 355: 311-318.
[43] 叶荣钦. 钛酸钴/类石墨氮化碳复合光催化剂的制备及其光催化性能研究[D]. 北京: 北京化工大学, 2016: 1-77.
YE Rong-qin. Fabrication of CoTiO3/g-C3N4 hybrid photocatalysts and their photocatalytic performance[D]. Beijing: Beijing University of Chemical Technology, 2016: 1-77.
[44] LUO Jin, ZHOU Xiao-song, NING Xiao-mei, et al. Utilization of LaCoO3 as an efficient co-catalyst to boost the visible light photocatalytic performance of g-C3N4[J]. Separation and Purification Technology, 2018, 201: 309-317.
[45] ZHOU Xiao-song, CHEN Yi-lei, LI Cui-fen, et al. Construction of LaNiO3 nanoparticles modified g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tetracycline degradation[J]. Separation and Purification Technology, 2019, 211: 179-188.
[46] LUO Jin, CHEN Jin-fen, GUO Rong-ting, et al. Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation[J]. Separation and Purification Technology, 2019, 211: 882-894.
[47] WU Yan, WANG Hou, TU Wen-guang, et al. Quasi- polymeric construction of stable perovskite-type LaFeO3/g- C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect[J]. Journal of Hazardous Materials, 2018, 347: 412-422.
[48] GAO Xiao-ming, SHANG Yan-yan, LIU Li-bo, et al. A plasmonic Z-scheme three-component photocatalyst g-C3N4/Ag/LaFeO3 with enhanced visible-light photocatalytic activities[J]. Optical Materials, 2019, 88: 229-237.
[49] RAKIBUDDIN M, KIM H, KHAN M E. Graphite-like carbon nitride (C3N4) modified N-doped LaTiO3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance[J]. Applied Surface Science, 2018, 452: 400-412.
[50] KUMAR A, SCHUERINGS C, KUMAR S, et al. Perovskite- structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation[J]. Beilstein Journal of Nanotechnology, 2018, 9: 671-685.
[51] TANG Lin, FENG Cheng-yang, DENG Yao-cheng, et al. Enhanced photocatalytic activity of ternary Ag/g-C3N4/ NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism[J]. Applied Catalysis B (Environmental), 2018, 230: 102-114.
[52] 雍志清. g-C3N4/ABO3复合材料的制备及光催化性能研 究[D]. 天津: 天津大学, 2014: 1-72.
YONG Zhi-qing. g-C3N4/ABO3 nanocomposites: Preparation and photocatalytic activities[D]. Tianjin: Tianjin University, 2014: 1-72.
[53] HUO Hui-wen, HU Xin-jiang, WANG Hui, et al. Synergy of photocatalysis and adsorption for simultaneous removal of hexavalent chromium and methylene blue by g-C3N4/ BiFeO3/carbon nanotubes ternary composites[J]. International Journal of Environmental Research and Public Health, 2019, 16(17): 3219.
[54] HU Xin-jiang, WANG Wei-xuan, XIE Guang-yu, et al. Ternary assembly of g-C3N4/graphene oxide sheets/BiFeO3 heterojunction with enhanced photoreduction of Cr(Ⅵ) under visible-light irradiation[J]. Chemosphere, 2019, 216: 733-741.
[55] 张 庭. BiFeO3基异质结复合光催化材料的制备及其性能研究[D]. 武汉: 武汉大学, 2017: 1-123.
ZHANG Ting. Preparation and properties of BiFeO3-based heterojunction complex photocatalytic materials[D]. Wuhan: Wuhan University, 2017: 1-123.
[56] TAO Ran, LI Xing-hua, LI Xiao-wei, et al. TiO2/SrTiO3/ g-C3N4 ternary heterojunction nanofibers: Gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation[J]. Nanoscale, 2020, 12(15): 8320-8329.
[57] LI Xin-ru, GE Zhi-chao, XUE Fei, et al. Lattice-oriented contact in Pd/SrTiO3 heterojunction for rapid electron transfer during photocatalytic H2 production[J]. Materials Research Bulletin, 2020, 123: 110722.
[58] CHEN Min, XIONG Qiang, LIU Zhu, et al. Synthesis and photocatalytic activity of Na+ co-doped CaTiO3: Eu3+ photocatalysts for methylene blue degradation[J]. Ceramics International, 2020, 46(8): 12111-12119.
[59] PEI Jing-yuan, MENG Jie, WU Shi-yan, et al. Effects of Ca/Ti ratio on morphology control and photocatalytic activity of CaTiO3/Ca(OH)2 composite photocatalyst[J]. Materials Letters, 2020, 276: 128229.
[60] KONSTAS P S, KONSTANTINOU I, PETRAKIS D, et al. Synthesis, characterization of g-C3N4/SrTiO3 heterojunctions and photocatalytic activity for organic pollutants degradation[J]. Catalysts, 2018, 8(11): 554.
[61] YANG Bian, WU Chao, WANG Jian-wei, et al. When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst[J]. Ceramics International, 2020, 46(4): 4248-4255.
[62] KATO H, KUDO A. New tantalate photocatalysts for water decomposition into H2 and O2[J]. Chemical Physics Letters, 1998, 295: 487-492.
[63] WANG Xiao-min, MA Jian-feng, KONG Yong, et al. Synthesis of p-n heterojunction Ag3PO4/NaTaO3 composite photocatalyst for enhanced visible-light-driven photocatalytic performance[J]. Materials Letters, 2019, 251: 192-195.
[64] WANG Miao-miao, MA Yan-xia, FO Yu-meng, et al. Theoretical insights into the origin of highly efficient photocatalyst NiO/NaTaO3 for overall water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(38): 19357-19369.
[65] LI Hua, SHI Xiao-bo, LIU Xu-guang, et al. Synthesis of novel, visible-light driven S,N-doped NaTaO3 catalysts with high photocatalytic activity[J]. Applied Surface Science, 2020, 508: 145306.
[66] LU Xiao-xiao, LI Qiang, LIU Shi-hao, et al. Fabrication of a novel BiOI/KTaO3 p-n heterostructure with enhanced photocatalytic performance under visible-light irradiation[J]. RSC Advances, 2020, 10(18): 10921-10931.
[67] SUDRAJAT H, THUSHARI I, BABEL S. Chemical state and coordination structure of La cations doped in KTaO3 photocatalysts[J]. Journal of Physics and Chemistry of Solids, 2019, 127: 94-100.
[68] SUDRAJAT H, DHAKAL D, KITTA M, et al. Electron population and water splitting activity controlled by strontium cations doped in KTaO3 photocatalysts[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18387-18397.
[69] YONG Zhi-qing, REN Jian, HU Hui-lin, et al. Synthesis, characterization, and photocatalytic activity of g-C3N4/ KTaO3 composites under visible light irradiation[J]. Journal of Nanomaterials, 2015, 2015: 821986.
[70] GUO Ji-feng, LI Peng-tao, YANG Zhao. A novel Z-scheme g-C3N4/LaCoO3 heterojunction with enhanced photocatalytic activity in degradation of tetracycline hydrochloride[J]. Catalysis Communications, 2019, 122: 63-67.
[71] JIN Ze-hua, HU Rui-sheng, WANG Hong-ye, et al. One-step impregnation method to prepare direct Z-scheme LaCoO3/ g-C3N4 heterojunction photocatalysts for phenol degradation under visible light[J]. Applied Surface Science, 2019, 491: 432-442.
[72] ACHARYA S, MANSINGH S, PARIDA K M. The enhanced photocatalytic activity of g-C3N4-LaFeO3 for the water reduction reaction through a mediator free Z-scheme mechanism[J]. Inorganic Chemistry Frontiers, 2017, 4(6): 1022-1032.
[73] 刘 畅, 张志宾, 王有群, 等. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33: 104-112.
LIU Chang, ZHANG Zhi-bin, WANG You-qun, et al. Progress in photocatalytic degradation of pollutants based on g-C3N4 heterogeneous junction composites[J]. Materials Reports, 2019, 33: 104-112.
[74] IBARRA-RODRIGUEZ L I, HUERTA-FLORES A M, TORRES-MARTINEZ L M. Facile synthesis of g-C3N4/LaMO3(M: Co, Mn, Fe) composites for enhanced visible-light-driven photocatalytic water splitting[J]. Materials Science in Semiconductor Processing, 2019, 103: 104643.
CHEN Yu-fang1, WANG Xue-fei2, BAI Hao-yang2, LU Jin-wei2, HU Jie1, 2, HUANG Hao1
(1. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China;
2. Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China)
Abstract: The development of industry and technology has caused energetic and environmental problems, such as energy shortages and water pollution in today’s society. The photocatalytic technology is an effective means to solve these problems, and photocatalyst is one of the main factors affecting photocatalytic technology. The graphite phase carbon nitride(g-C3N4) plays an important role in the field of photocatalysis because of its wide source of raw materials, non-toxicity, stable chemical properties, and relatively narrow band gap (2.7 eV) for visible light response. Perovskite type oxide(ABO3) has a unique stable structure and excellent electronic configuration. The existence of non-stoichiometric oxygen vacancies will provide more reaction sites for photocatalytic reactions. The recent advances of ABO3/g-C3N4 composite in photocatalytic hydrogen evolution and organic pollutant degradation were reviewed. The reason for the composite with good photocatalytic performance was analyzed. Finally, the challenges remaining to be solved were summarized, and the prospects of ABO3/g-C3N4 for further advances in photocatalysis were also presented.
Key words: graphite phase carbon nitride; perovskite type oxide; composites; photocatalysis
Foundation item: Project(51771165) supported by the National Natural Science Foundation of China; Project (E2020203123) supported by the Natural Science Foundation of Hebei Province, China
Received date: 2020-11-03; Accepted date: 2021-06-06
Corresponding author: HU Jie; Tel: +86-15369701580; E-mail: hujie@ysu.edu.cn
HUANG Hao; Tel: +86-15369700375; E-mail: huanghao@ysu.edu.cn
(编辑 李艳红)
基金项目:国家自然科学基金资助项目(51771165);河北省自然科学基金资助项目(E2020203123)
收稿日期:2020-11-03;修订日期:2021-06-06
通信作者:胡 婕,教授,博士;电话:15369701580;E-mail:hujie@ysu.edu.cn
黄 浩,教授,博士;电话:15369700375;E-mail:huanghao@ysu.edu.cn