简介概要

Characterizations on Mechanical Properties and In Vitro Bioactivity of Biomedical Ti–Nb–Zr–CPP Composites Fabricated by Spark Plasma Sintering

来源期刊:Acta Metallurgica Sinica2016年第11期

论文作者:Zheng-Yuan He Lei Zhang Wen-Rui Shan Yu-Qin Zhang Ye-Hua Jiang Rong Zhou Jun Tan

文章页码:1073 - 1080

摘    要:To alleviate the bio-inert of Ti alloys as hard tissue implants, Ti–35Nb–7Zr–xCPP(calcium pyrophosphate,x = 5, 10, 15, 20 wt%) composites were prepared by mechanical alloying(MA) and following spark plasma sintering(SPS). Mechanical behaviours and in vitro bioactivity of these composites were investigated systematically. Results showed that the composites consisted of β-Ti matrix, α-Ti, and metal–ceramic phases such as CaO, CaTiO3, CaZrO3, and TixPy. With increasing CPP content, the composites had higher strength(over 1500 MPa) and higher elastic modulus, but suffered almost zero plastic deformation together with lower relative density. When the CPP contents were 5 and 10 wt%,the compressive elastic moduli were 44 and 48 GPa, respectively, which were close to those of natural bones. However, the compressive elastic modulus of the composites increased significantly when CPP contents exceed 10 wt%, thus deteriorating the mechanical compatibility of the composites owing to more α-Ti and metal–ceramic phases. Besides, the surface of Ti–35Nb–7Zr–10CPP composite was deposited as a homogeneous apatite layer during soaking in simulated body fluid(SBF). It indicates a good bioactivity between the implant materials and living bones.

详情信息展示

Characterizations on Mechanical Properties and In Vitro Bioactivity of Biomedical Ti–Nb–Zr–CPP Composites Fabricated by Spark Plasma Sintering

Zheng-Yuan He1,2,Lei Zhang1,2,Wen-Rui Shan1,2,Yu-Qin Zhang1,2,3,Ye-Hua Jiang1,2,Rong Zhou1,2,Jun Tan1,2,4

1. School of Materials Science and Engineering, Kunming University of Science and Technology2. National-local Joint Engineering Laboratory of Metal Advanced Solidification Forming and Equipment Technology4. IFW Dresden, Institute for Complex Materials

摘 要:To alleviate the bio-inert of Ti alloys as hard tissue implants, Ti–35Nb–7Zr–xCPP(calcium pyrophosphate,x = 5, 10, 15, 20 wt%) composites were prepared by mechanical alloying(MA) and following spark plasma sintering(SPS). Mechanical behaviours and in vitro bioactivity of these composites were investigated systematically. Results showed that the composites consisted of β-Ti matrix, α-Ti, and metal–ceramic phases such as CaO, CaTiO3, CaZrO3, and TixPy. With increasing CPP content, the composites had higher strength(over 1500 MPa) and higher elastic modulus, but suffered almost zero plastic deformation together with lower relative density. When the CPP contents were 5 and 10 wt%,the compressive elastic moduli were 44 and 48 GPa, respectively, which were close to those of natural bones. However, the compressive elastic modulus of the composites increased significantly when CPP contents exceed 10 wt%, thus deteriorating the mechanical compatibility of the composites owing to more α-Ti and metal–ceramic phases. Besides, the surface of Ti–35Nb–7Zr–10CPP composite was deposited as a homogeneous apatite layer during soaking in simulated body fluid(SBF). It indicates a good bioactivity between the implant materials and living bones.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号