简介概要

Preparation and photocatalytic activity of Fe3O4@SiO2@ZnO:La

来源期刊:JOURNAL OF RARE EARTHS2020年第12期

论文作者:Xiaowei Lv Wenyi Huang Xingcheng Ding Jiangwei He Qiumei Huang Jialin Tan Hao Cheng Jun Feng Lijun Li

文章页码:1288 - 1296

摘    要:In this study,Fe3 O4@SiO2@ZnO:La microspheres were successfully prepared.The microspheres have the advantages of both ZnO doped with La and the Fe3 O4@SiO2 structure such that the former improves the photocatalytic activity of ZnO and the latter can be reused.The X-ray diffraction(XRD),a field emission scanning electron microscope(SEM),a field emission transmission electron microscope(TEM),X-ray photoelectron spectroscopy(XPS),and a vibrating sample magnetometer(VSM) were used to characterize Fe3 O4@SiO2@ZnO:La microspheres.Methyl orange was used as the model molecule to study the effect of the Zn2+concentration and the doping amount of La on the photocatalytic activity of Fe3 O4@SiO2@ZnO:La microspheres.Results show that in the synthesis of Fe3 O4@SiO2@ZnO:La microspheres,photocatalytic activity of the microspheres is enhanced first and weakened later with the increase of Zn2+concentration.In the La doping process,the photocatalytic activity of Fe3 O4@SiO2@ZnO:La microspheres is enhanced with the increase in the La doping amount.The magnetic photocatalysts not only have high photocatalytic activity,but also can be reused.After being reused five times,the photocatalyst’s degradation rate of methyl orange is still as high as 81%,which shows that magnetic photocatalysts have prospective wider applications in photocatalytic degradation of dye wastewater.

详情信息展示

Preparation and photocatalytic activity of Fe3O4@SiO2@ZnO:La

Xiaowei Lv1,2,Wenyi Huang1,Xingcheng Ding2,Jiangwei He2,Qiumei Huang1,Jialin Tan1,Hao Cheng1,Jun Feng1,Lijun Li1

1. Guangxi Key Laboratory of Green Processing of Sugar Resources,College of Biological and Chemical Engineering,Guangxi University of Science and Technology2. Zhejiang Runtu Co.,Ltd.

摘 要:In this study,Fe3 O4@SiO2@ZnO:La microspheres were successfully prepared.The microspheres have the advantages of both ZnO doped with La and the Fe3 O4@SiO2 structure such that the former improves the photocatalytic activity of ZnO and the latter can be reused.The X-ray diffraction(XRD),a field emission scanning electron microscope(SEM),a field emission transmission electron microscope(TEM),X-ray photoelectron spectroscopy(XPS),and a vibrating sample magnetometer(VSM) were used to characterize Fe3 O4@SiO2@ZnO:La microspheres.Methyl orange was used as the model molecule to study the effect of the Zn2+concentration and the doping amount of La on the photocatalytic activity of Fe3 O4@SiO2@ZnO:La microspheres.Results show that in the synthesis of Fe3 O4@SiO2@ZnO:La microspheres,photocatalytic activity of the microspheres is enhanced first and weakened later with the increase of Zn2+concentration.In the La doping process,the photocatalytic activity of Fe3 O4@SiO2@ZnO:La microspheres is enhanced with the increase in the La doping amount.The magnetic photocatalysts not only have high photocatalytic activity,but also can be reused.After being reused five times,the photocatalyst’s degradation rate of methyl orange is still as high as 81%,which shows that magnetic photocatalysts have prospective wider applications in photocatalytic degradation of dye wastewater.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号