简介概要

Effects of CaO and Na2CO3 on the Reduction of High Silicon Iron Ores

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2017年第3期

论文作者:范敦城 倪文 WANG Jianyue

文章页码:508 - 516

摘    要:The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2CO3, particularly at the early stage of roasting, compared to the rate without additives. In the absence of additives, iron oxides were quickly reduced to metallic iron, and fayalite was difficult to form. When CaO and Na2CO3 were added, the low reducible iron-containing silicate compounds formed and melted, subsequently retarding the metallization process. The inhibition of Na2CO3 was more noticeable than that of CaO, and higher Na2CO3 doses resulted in stronger inhibition of the increased metallization rate. However, when Na2CO3 was added prior to CaO, the liquid phase formed, which facilitated the growth of the metallic phase. To reinforce the separation of the metallic phase and slag, an appropriate amount of liquid phase generated during the reduction is necessary. It was shown that when 10% CaO and 10% Na2CO3 were added, a high metallization rate and larger metallic iron particles were obtained, thus further decreasing the required Na2CO3 dosage.

详情信息展示

Effects of CaO and Na2CO3 on the Reduction of High Silicon Iron Ores

范敦城1,2,倪文1,WANG Jianyue1

1. Key Laboratory of the Ministry of Education of China for High-Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing

摘 要:The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2CO3, particularly at the early stage of roasting, compared to the rate without additives. In the absence of additives, iron oxides were quickly reduced to metallic iron, and fayalite was difficult to form. When CaO and Na2CO3 were added, the low reducible iron-containing silicate compounds formed and melted, subsequently retarding the metallization process. The inhibition of Na2CO3 was more noticeable than that of CaO, and higher Na2CO3 doses resulted in stronger inhibition of the increased metallization rate. However, when Na2CO3 was added prior to CaO, the liquid phase formed, which facilitated the growth of the metallic phase. To reinforce the separation of the metallic phase and slag, an appropriate amount of liquid phase generated during the reduction is necessary. It was shown that when 10% CaO and 10% Na2CO3 were added, a high metallization rate and larger metallic iron particles were obtained, thus further decreasing the required Na2CO3 dosage.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号