Influence of Mechanical Milling on Photocatalytic Activity of g-C3N4 Prepared by Heating Melamine
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2010年第6期
论文作者:杨明
文章页码:914 - 918
摘 要:Using X-ray diffraction,transmission electron microscopy,Brunauer-Emmett-Teller surface area measurement,ultraviolet-visible diffuse reflection spectra,and photoluminescence spectroscopy,the effect of mechanical milling on the photocatalytic activity of g-C3N4 photocatalyst was investigated.The rhodamine B,as a photodegrading goal,was used to evaluate the photocatalytic activity of g-C3N4.The experimental results indicate that the milling treatment is an effective method to improve the photocatalytic activity of g-C3N4.The enhanced photocatalytic activity was attributed to the improvement in catalyst’s surface area and dye adsorption on catalyst surface.Moreover,checking the luminescence properties of g-C3N4,it is found that the photocatalytic active sites on g-C3N4 are likely the same as luminescence sites.
杨明
School of Transportation,Southeast University
摘 要:Using X-ray diffraction,transmission electron microscopy,Brunauer-Emmett-Teller surface area measurement,ultraviolet-visible diffuse reflection spectra,and photoluminescence spectroscopy,the effect of mechanical milling on the photocatalytic activity of g-C3N4 photocatalyst was investigated.The rhodamine B,as a photodegrading goal,was used to evaluate the photocatalytic activity of g-C3N4.The experimental results indicate that the milling treatment is an effective method to improve the photocatalytic activity of g-C3N4.The enhanced photocatalytic activity was attributed to the improvement in catalyst’s surface area and dye adsorption on catalyst surface.Moreover,checking the luminescence properties of g-C3N4,it is found that the photocatalytic active sites on g-C3N4 are likely the same as luminescence sites.
关键词: