Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries

来源期刊:Rare Metals2013年第3期

论文作者:Tao Li Juan-Yu Yang Shi-Gang Lu Han Wang Hai-Yang Ding

文章页码:299 - 304

摘    要:Silicon has been investigated extensively as a promising anode material for rechargeable lithium-ion batteries. Understanding the failure mechanism of silicon-based anode electrodes for lithium-ion batteries is essential to solve the problem of low coulombic efficiency and capacity fading on cycling and also to further commercialize this very new energetic material in cells. To reach this goal, the structure changes of bulk silicon particles and electrode after cycling were studied using ex-situ scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM images indicated that the microstructural changes of the bulk silicon particles during cycling led to a layer rupture of the electrode and then the breakdown of the conductive network and the failure of the electrode. The result contributes to the basic understanding of the failure mechanism of a bulk silicon anode electrode for lithium-ion batteries.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号