简介概要

Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第1期

论文作者:Oluwafunmilola Ola Yu Chen Qijian Niu Yongde Xia Tapas Mallick Yanqiu Zhu

文章页码:70 - 78

摘    要:Polymer based nanocomposites consisting of elastic three-dimensional(3 D) carbon foam(CF),paraffin wax and graphene nanoplatelets(GNPs) have been created and evaluated for thermal energy storage.The ultralight,highly porous(~98.6% porosity),and flexible CFs with densities of2.84-5.26 mg/cm3 have been used as the backbone skeleton to accommodate phase change wax and nanoscale thermal conductive enhancer,GNP.Low level of defects and the ordered sp2 configuration allow the resulting CFs to exhibit excellent cyclic compressive behavior at strains up to 95%,while retaining part of their elastic properties even after 100 cycles of testing.By dispersing the highly conductive GNP nanofillers in paraffin wax and infiltrating them into the flexible CFs,the resultant nanocomposites were observed to possess enhanced overall thermal conductivity up to 0.76 W/(m K),representing an impressive improvement of226%,which is highly desirable for thermal engineering.

详情信息展示

Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage

Oluwafunmilola Ola1,Yu Chen1,Qijian Niu2,Yongde Xia1,Tapas Mallick1,Yanqiu Zhu1

1. College of Engineering, Mathematics and Physical Sciences, University of Exeter2. Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Changzhou Institute of Advanced Materials Research, Beijing University of Chemical Technology

摘 要:Polymer based nanocomposites consisting of elastic three-dimensional(3 D) carbon foam(CF),paraffin wax and graphene nanoplatelets(GNPs) have been created and evaluated for thermal energy storage.The ultralight,highly porous(~98.6% porosity),and flexible CFs with densities of2.84-5.26 mg/cm3 have been used as the backbone skeleton to accommodate phase change wax and nanoscale thermal conductive enhancer,GNP.Low level of defects and the ordered sp2 configuration allow the resulting CFs to exhibit excellent cyclic compressive behavior at strains up to 95%,while retaining part of their elastic properties even after 100 cycles of testing.By dispersing the highly conductive GNP nanofillers in paraffin wax and infiltrating them into the flexible CFs,the resultant nanocomposites were observed to possess enhanced overall thermal conductivity up to 0.76 W/(m K),representing an impressive improvement of226%,which is highly desirable for thermal engineering.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号