Preparation and Characterization of Semi-Carbonized Rice Straw Fiber
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2016年第3期
论文作者:蹇守卫 汪婷 MA Baoguo TAN Hongbo HUANG Jian
文章页码:496 - 502
摘 要:The semi-carbonization method is a kind of waste treatment to carbonize rice straw fiber at low semi-carbon temperature. The rice straw fiber is carbonized incompletely, which serves as building materials additive. The results reveal that the optimized carbonization condition is at 313 ℃ for 20-40 min with H3PO4 as activator. The structure of semi-carbonized straw fiber displays a large quantity of micropores, with which the wall thickness and the pore diameter are in the range of 1-4 μm, presenting the iodine sorption value of 1 320-1 470 m L/g and the methylene blue sorption value of 1 330-1 460 mg/g, respectively. Moreover, the acidic oxygen-containing groups impart the structure higher sorption of polar molecules. The semi-carbonized rice straw fiber with open and closed micro-mesopores demonstrates good hygroscopicity, implying the potential application as a functional additive in building materials.
蹇守卫1,汪婷2,MA Baoguo1,TAN Hongbo2,HUANG Jian2
1. School of Material Science and Engineering, Wuhan University of Technology2. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology
摘 要:The semi-carbonization method is a kind of waste treatment to carbonize rice straw fiber at low semi-carbon temperature. The rice straw fiber is carbonized incompletely, which serves as building materials additive. The results reveal that the optimized carbonization condition is at 313 ℃ for 20-40 min with H3PO4 as activator. The structure of semi-carbonized straw fiber displays a large quantity of micropores, with which the wall thickness and the pore diameter are in the range of 1-4 μm, presenting the iodine sorption value of 1 320-1 470 m L/g and the methylene blue sorption value of 1 330-1 460 mg/g, respectively. Moreover, the acidic oxygen-containing groups impart the structure higher sorption of polar molecules. The semi-carbonized rice straw fiber with open and closed micro-mesopores demonstrates good hygroscopicity, implying the potential application as a functional additive in building materials.
关键词: