简介概要

Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2021年第2期

论文作者:Xian-Zong Wang Hong-Qiang Fan Triratna Muneshwar Ken Cadien Jing-Li Luo

文章页码:75 - 84

摘    要:Developing an electrically conductive and corrosion-resistant coating is essential for metal bipolar plates of polymer electrolyte membrane fuel cells(PEMFCs). Although enhanced corrosion resistance was seen for Cr coated stainless steel(Cr/SS) bipolar plates, they experience a quick decrease of through-plane electrical conductivity due to the formation of a porous and low-conductive corrosion product layer at the plate surface, thus leading to an increase in interfacial contact resistance(ICR). To tackle this issue, the multilayer Cr coatings were deposited using the magnetron sputtering with a remote inductively coupled oxygen plasma(O-ICP) in the present study. After the O-ICP treatment, a Cr oxide layer(Cr O*) is formed on the specimen surface. The Cr O*/Cr/SS has a remarkably lower stable corrosion rate(iss) than that of the native Cr oxides(Cr On/Cr/SS). Compared with Cr On/Cr/SS, the excellent performance of Cr O*/Cr/SS is attributed to a denser and thicker surface layer of Cr O* with Cr being oxidized to its highest valence state,Cr(VI). More importantly, the through-plane electrical conductivity of the specimens treated by the optimized O-ICP decreases much slowly than Cr On/Cr/SS and thus, the increament of ICR of Cr O*/Cr/SS after the potentiostatic polarization test is considerably smaller than that of Cr On/Cr/SS, which is benefited from the reduced issthat mitigates the deposition of corrosion products and hinders further oxidation of Cr coating. Therefore, Cr O*/Cr/SS proves to be a well balanced trade-off between corrosion resistance and through-plane electrical conductivity. The results of this study demonstrate that O-ICP treatment on a conductive metal coating is an effective strategy to improve the corrosion resistance and suppress the increase of ICR over the long-term polarization. The technique reported herein exhibits its promising potential application in preparing corrosion resistant and electrically conductive coatings on metal bipolar plates to be used in PEMFCs.

详情信息展示

Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment

Xian-Zong Wang1,2,Hong-Qiang Fan3,Triratna Muneshwar2,Ken Cadien2,Jing-Li Luo2

1. State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University2. Department of Chemical and Materials Engineering, University of Alberta3. Laboratory for Microstructures, Institute of Materials, School of Materials Science and Engineering, Shanghai University

摘 要:Developing an electrically conductive and corrosion-resistant coating is essential for metal bipolar plates of polymer electrolyte membrane fuel cells(PEMFCs). Although enhanced corrosion resistance was seen for Cr coated stainless steel(Cr/SS) bipolar plates, they experience a quick decrease of through-plane electrical conductivity due to the formation of a porous and low-conductive corrosion product layer at the plate surface, thus leading to an increase in interfacial contact resistance(ICR). To tackle this issue, the multilayer Cr coatings were deposited using the magnetron sputtering with a remote inductively coupled oxygen plasma(O-ICP) in the present study. After the O-ICP treatment, a Cr oxide layer(Cr O*) is formed on the specimen surface. The Cr O*/Cr/SS has a remarkably lower stable corrosion rate(iss) than that of the native Cr oxides(Cr On/Cr/SS). Compared with Cr On/Cr/SS, the excellent performance of Cr O*/Cr/SS is attributed to a denser and thicker surface layer of Cr O* with Cr being oxidized to its highest valence state,Cr(VI). More importantly, the through-plane electrical conductivity of the specimens treated by the optimized O-ICP decreases much slowly than Cr On/Cr/SS and thus, the increament of ICR of Cr O*/Cr/SS after the potentiostatic polarization test is considerably smaller than that of Cr On/Cr/SS, which is benefited from the reduced issthat mitigates the deposition of corrosion products and hinders further oxidation of Cr coating. Therefore, Cr O*/Cr/SS proves to be a well balanced trade-off between corrosion resistance and through-plane electrical conductivity. The results of this study demonstrate that O-ICP treatment on a conductive metal coating is an effective strategy to improve the corrosion resistance and suppress the increase of ICR over the long-term polarization. The technique reported herein exhibits its promising potential application in preparing corrosion resistant and electrically conductive coatings on metal bipolar plates to be used in PEMFCs.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号