简介概要

Sintering behaviors and consolidation mechanism of high-chromium vanadium and titanium magnetite fines

来源期刊:International Journal of Minerals Metallurgy and Materials2015年第9期

论文作者:Mi Zhou Tao Jiang Song-tao Yang Xiang-xin Xue

文章页码:917 - 925

摘    要:To achieve high efficiency utilization of high-chromium vanadium–titanium magnetite(V–Ti–Cr) fines, an investigation of V–Ti–Cr fines was conducted using a sinter pot. The chemical composition, particle parameters, and granulation of V–Ti–Cr mixtures were analyzed, and the effects of sintering parameters on the sintering behaviors were investigated. The results indicated that the optimum quicklime dosage, mixture moisture, wetting time, and granulation time for V–Ti–Cr fines are 5wt%, 7.5wt%, 10 min, and 5–8 min, respectively. Meanwhile, the vertical sintering speed, yield, tumbler strength, and productivity gains were shown to be 21.28 mm/min, 60.50wt%, 58.26wt%, and 1.36 t·m-2·h-1, respectively. Furthermore, the consolidation mechanism of V–Ti–Cr fines was clarified, revealing that the consolidation of a V–Ti–Cr sinter requires an approximately 14vol% calcium ferrite liquid-state, an approximately 15vol% silicate liquid-state, a solid-state reaction, and the recrystallization of magnetite. Compared to an ordinary sinter, calcium ferrite content in a V–Ti–Cr sinter is lower, while the perovskite content is higher, possibly resulting in unsatisfactory sinter outcomes.

详情信息展示

Sintering behaviors and consolidation mechanism of high-chromium vanadium and titanium magnetite fines

Mi Zhou,Tao Jiang,Song-tao Yang,Xiang-xin Xue

School of Materials and Metallurgy, Northeastern University

摘 要:To achieve high efficiency utilization of high-chromium vanadium–titanium magnetite(V–Ti–Cr) fines, an investigation of V–Ti–Cr fines was conducted using a sinter pot. The chemical composition, particle parameters, and granulation of V–Ti–Cr mixtures were analyzed, and the effects of sintering parameters on the sintering behaviors were investigated. The results indicated that the optimum quicklime dosage, mixture moisture, wetting time, and granulation time for V–Ti–Cr fines are 5wt%, 7.5wt%, 10 min, and 5–8 min, respectively. Meanwhile, the vertical sintering speed, yield, tumbler strength, and productivity gains were shown to be 21.28 mm/min, 60.50wt%, 58.26wt%, and 1.36 t·m-2·h-1, respectively. Furthermore, the consolidation mechanism of V–Ti–Cr fines was clarified, revealing that the consolidation of a V–Ti–Cr sinter requires an approximately 14vol% calcium ferrite liquid-state, an approximately 15vol% silicate liquid-state, a solid-state reaction, and the recrystallization of magnetite. Compared to an ordinary sinter, calcium ferrite content in a V–Ti–Cr sinter is lower, while the perovskite content is higher, possibly resulting in unsatisfactory sinter outcomes.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号