简介概要

Theoretical analysis of JMC effect on stress wave transmission and reflection

来源期刊:International Journal of Minerals Metallurgy and Materials2018年第11期

论文作者:Xin Chen Mei-feng Cai Jian-chuan Li Wen-hui Tan

文章页码:1237 - 1245

摘    要:Taking the joint matching coefficient(JMC) which represents the contact area ratio of the joint in rock masses as the key parameter, a one-dimensional contacted interface model(CIM-JMC) was established in this study to describe the wave propagation across a single joint. According to this model, the reflected and transmitted waves at the joint were obtained, and the energy coefficients of reflection and transmission were calculated. Compared with the modified Split Hopkinson pressure bar(SHPB) experiment, it was validated by taking the incident wave of the SHPB test as the input condition in the CIM-JMC, and the reflected and transmitted waves across the joint were calculated by the model. The effects of four sets of JMCs(0.81, 0.64, 0.49, and 0.36) on the transmission and reflection of the stress wave propagation across the joint were analyzed and compared with the experimental results. It demonstrated that the values of CIM-JMC could represent both the transmission and reflection of the stress wave accurately when JMC > 0.5, but could relatively accurately represent the reflection rather than the transmission when JMC < 0.5. By contrasting energy coefficients of joints with different JMCs, it was revealed that energy dissipated sharply along the decrease of JMC when JMC > 0.5.

详情信息展示

Theoretical analysis of JMC effect on stress wave transmission and reflection

Xin Chen1,2,Mei-feng Cai1,2,Jian-chuan Li3,Wen-hui Tan1,2

1. Beijing Key Laboratory of Urban Underground Space Engineering,University of Science and Technology Beijing2. Civil and Resource Engineering School,University of Science and Technology Beijing3. Institute of Underground Space Technology,School of Civil Engineering,Southeast University

摘 要:Taking the joint matching coefficient(JMC) which represents the contact area ratio of the joint in rock masses as the key parameter, a one-dimensional contacted interface model(CIM-JMC) was established in this study to describe the wave propagation across a single joint. According to this model, the reflected and transmitted waves at the joint were obtained, and the energy coefficients of reflection and transmission were calculated. Compared with the modified Split Hopkinson pressure bar(SHPB) experiment, it was validated by taking the incident wave of the SHPB test as the input condition in the CIM-JMC, and the reflected and transmitted waves across the joint were calculated by the model. The effects of four sets of JMCs(0.81, 0.64, 0.49, and 0.36) on the transmission and reflection of the stress wave propagation across the joint were analyzed and compared with the experimental results. It demonstrated that the values of CIM-JMC could represent both the transmission and reflection of the stress wave accurately when JMC > 0.5, but could relatively accurately represent the reflection rather than the transmission when JMC < 0.5. By contrasting energy coefficients of joints with different JMCs, it was revealed that energy dissipated sharply along the decrease of JMC when JMC > 0.5.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号