简介概要

MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构

图书来源:二元合金相图及中间相晶体结构 二元合金相图及中间相晶体结构

作 者:唐仁政 田荣璋

出版时间:2009-05

定 价:320元

图书ISBN:978-7-81105-831-4

出版单位:中南大学出版社

详情信息展示

Cavitation Erosion Corrosion Behaviour of Manganese-nickel-aluminum Bronze in Comparison with Manganese-brass

Hong Yu, Yugui Zheng? and Zhiming Yao State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Acadamy of Sciences, Shenyang 110016, China

摘 要:The cavitation erosion corrosion behaviour of ZQMn12-8-3-2 manganese-nickel-aluminum bronze and ZHMn55-3-1 manganese-brass was investigated by mass loss, electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) and the cavitation damaged surfaces were observed by scanning electron microscopy (SEM). The results showed that ZQMn12-8-3-2 had better cavitation erosion resistance than ZHMn55-3-1. After the cavitation erosion for 6 h, the cumulative mass loss of ZQMn12-8-3-2 was about 1/3 that of ZHMn55-3-1. The corrosion current density of ZQMn12-8-3-2 was less than that of ZHMn55-3-1 under both static and cavitaiton condition. The free-corrosion potentials of ZQMn12-8-3-2 and ZHMn55-3-1 were all shifted in positive direction under cavitation condition compared to static condition. In the total cumulative mass loss under cavitation condition, the pure erosion played a key role for the two tested materials (74% for ZHMn55-3-1 and 60% for ZQMn12-8-3-2), and the total synergism between corrosion and erosion of ZQMn12-8-3-2 (39%) was larger than that of ZHMn55-3-1 (23%). The high cavitation erosion resistance of ZQMn12-8-3-2 was mainly attributed to its lower stacking fault energy (SFE), the higher microhardness and work-hardening ability as well as the favorable propagation of cavitation cracks for ZQMn12-8-3-2, i.e., parallel to the surface rather than perpendicular to the surface for ZHMn55-3-1.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号