简介概要

Effect of erbium substitution on thermoelectric properties of complex oxide Ca3Co2O6 at high temperatures

来源期刊:JOURNAL OF RARE EARTHS2008年第2期

论文作者:PEI Jian CHEN Gang LU Dongqing XIAN Hengze YANG Xi

Key words:Ca3Co2O6; thermoelectric properties; rare earth substitution; cobalt oxide; rare earths;

Abstract: Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution on the thermoelectric properties of Ca3Co2O6. The crystal structure and microstructure were investigated using X-ray diffraction, infrared spectroscopy and scanning electron microscope. The electrical conductivity and Seebeck coefficient of the complex oxides were measured from 300 to 1073 K. The results showed that all the samples were p-type semiconductors. The electrical conductivity increased with the increase in temperature. Er substitutions at Ca site affected carrier concentrations and carrier mobility, resulting an increase in Seebeck coefficient and decrease in electrical conductivity. The power factor of Ca2.85Er0.15Co2O6 reached 10.66 μw/mK2 at 1073 K.

详情信息展示

Effect of erbium substitution on thermoelectric properties of complex oxide Ca3Co2O6 at high temperatures

PEI Jian1,CHEN Gang1,LU Dongqing1,XIAN Hengze1,YANG Xi1

(1.Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001,China)

Abstract:Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution on the thermoelectric properties of Ca3Co2O6. The crystal structure and microstructure were investigated using X-ray diffraction, infrared spectroscopy and scanning electron microscope. The electrical conductivity and Seebeck coefficient of the complex oxides were measured from 300 to 1073 K. The results showed that all the samples were p-type semiconductors. The electrical conductivity increased with the increase in temperature. Er substitutions at Ca site affected carrier concentrations and carrier mobility, resulting an increase in Seebeck coefficient and decrease in electrical conductivity. The power factor of Ca2.85Er0.15Co2O6 reached 10.66 μw/mK2 at 1073 K.

Key words:Ca3Co2O6; thermoelectric properties; rare earth substitution; cobalt oxide; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号