简介概要

Theoretical consideration on composite oxide scales and coatings

来源期刊:Journal of Rare Earths2013年第5期

论文作者:何业东 高唯

文章页码:435 - 440

摘    要:The present paper discussed some fundamental aspects on composite oxide scales and coatings for protection of alloys from high temperature oxidation, the related thermodynamic conditions, special mechanical characteristics and a sealing mechanism. It was proposed that the oxide scales and coatings with a composite structure should possess superior mechanical properties than that with a single phase oxide. It also showed that the Al2O3 scales or coatings doped with Y2O3 and ZrO2 (or YSZ)-Al2O3 composite coatings possessed superior properties at high temperatures. In such composite oxide scales and coatings, the fracture resistance of the scales was increased by the toughening effect, the thermal stress was decreased owing to the increase of thermal-expansion coefficients, and Al2O3 phase could seal the alloy substrate well. In addition, the kinetic equation of thermal growth oxide on alloy covered with composite oxide coatings was derived.

详情信息展示

Theoretical consideration on composite oxide scales and coatings

何业东1,高唯2

1. Beijing Key Laboratory for Corrosion-Erosion and Surface Technology,University of Science and Technology Beijing2. Engineering School,The University of Auckland

摘 要:The present paper discussed some fundamental aspects on composite oxide scales and coatings for protection of alloys from high temperature oxidation, the related thermodynamic conditions, special mechanical characteristics and a sealing mechanism. It was proposed that the oxide scales and coatings with a composite structure should possess superior mechanical properties than that with a single phase oxide. It also showed that the Al2O3 scales or coatings doped with Y2O3 and ZrO2 (or YSZ)-Al2O3 composite coatings possessed superior properties at high temperatures. In such composite oxide scales and coatings, the fracture resistance of the scales was increased by the toughening effect, the thermal stress was decreased owing to the increase of thermal-expansion coefficients, and Al2O3 phase could seal the alloy substrate well. In addition, the kinetic equation of thermal growth oxide on alloy covered with composite oxide coatings was derived.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号