简介概要

Response of structural and magnetic properties of ultra-thin FeCo–V foils to high-energy beam welding processes

来源期刊:International Journal of Minerals Metallurgy and Materials2015年第11期

论文作者:H.Mostaan M.Shamanian S.Hasani J.A.Szpunar

文章页码:1190 - 1198

摘    要:Microstructural evolutions and grain-boundary-character distribution during high-energy-beam welding of ultra-thin Fe Co?V foils were studied. Detailed data about the boundaries, coincidence site lattice(CSL) relationships, grain sizes, and microstructural features were acquired from electron-backscatter diffraction(EBSD) maps. Moreover, the evolution of the magnetic properties during high-energy-beam welding was studied using vibrating sample magnetometry(VSM). The fraction of low-angle boundaries was observed to increase in the fusion zones of both electron- and laser-beam-welded foils. The results showed that the fractions of low-Σ CSL boundaries(particularly twin boundaries, Σ3) in the fusion zones of the welded foils are higher than those in the base metal. Because the strain rates produced during high-energy-beam welding are very high(because of the extremely high cooling rate), grain deformation by a slip mechanism is limited; therefore, deformation by grain twinning is dominant. VSM analysis showed that the magnetic properties of the welded foils, i.e., their remanence, coercive force, and energy product, changed significantly. The formation of large grains with preferred orientation parallel to the easy axis of magnetization was the main reason for the diminished magnetic properties.

详情信息展示

Response of structural and magnetic properties of ultra-thin FeCo–V foils to high-energy beam welding processes

H.Mostaan1,M.Shamanian2,S.Hasani2,J.A.Szpunar3

1. Department of Materials and Metallurgical Engineering, Arak University2. Department of Materials Engineering, Isfahan University of Technology3. Department of Mechanical Engineering, University of Saskatchewan

摘 要:Microstructural evolutions and grain-boundary-character distribution during high-energy-beam welding of ultra-thin Fe Co?V foils were studied. Detailed data about the boundaries, coincidence site lattice(CSL) relationships, grain sizes, and microstructural features were acquired from electron-backscatter diffraction(EBSD) maps. Moreover, the evolution of the magnetic properties during high-energy-beam welding was studied using vibrating sample magnetometry(VSM). The fraction of low-angle boundaries was observed to increase in the fusion zones of both electron- and laser-beam-welded foils. The results showed that the fractions of low-Σ CSL boundaries(particularly twin boundaries, Σ3) in the fusion zones of the welded foils are higher than those in the base metal. Because the strain rates produced during high-energy-beam welding are very high(because of the extremely high cooling rate), grain deformation by a slip mechanism is limited; therefore, deformation by grain twinning is dominant. VSM analysis showed that the magnetic properties of the welded foils, i.e., their remanence, coercive force, and energy product, changed significantly. The formation of large grains with preferred orientation parallel to the easy axis of magnetization was the main reason for the diminished magnetic properties.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号