简介概要

Photocatalytic oxidation of nitric oxide from simulated flue gas by wet scrubbing using ultraviolet/TiO2/H2O2 process

来源期刊:中南大学学报(英文版)2015年第1期

论文作者:张波 ZHONG Zhao-ping(仲兆平) FU Zong-ming(付宗明)

文章页码:82 - 87

Key words:photocatalytic oxidation; nitric oxide; UV/TiO2/H2O2 process

Abstract: Nitric oxide (NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet (UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect. The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 mL. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.

详情信息展示

Photocatalytic oxidation of nitric oxide from simulated flue gas by wet scrubbing using ultraviolet/TiO2/H2O2 process

ZHANG Bo(张波), ZHONG Zhao-ping(仲兆平), FU Zong-ming(付宗明)

(Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education
(School of Energy and Environment, Southeast University), Nanjing 210096, China)

Abstract:Nitric oxide (NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet (UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect. The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10-6 and TiO2/H2O2 solution volume of 600 mL. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.

Key words:photocatalytic oxidation; nitric oxide; UV/TiO2/H2O2 process

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号