简介概要

基于混合粒子群算法的RBF神经网络参数优化

来源期刊:控制工程2006年第6期

论文作者:岳恒 张海军 柴天佑

文章页码:525 - 529

关键词:径向基函数(RBF);粒子群优化算法(PSO);灰色系统;参数优化;

摘    要:针对径向基函数(RBF)神经网络中心参数的优化问题,提出了一种混合粒子群优化算法。该算法应用灰色关联理论定义了粒子群的灰色相似度,分两个阶段对标准的粒子群优化算法(PSO)的全局和局部搜索能力做了改进和提高。在仿真实验中,应用该方法对典型的Mackey-Glass混沌时间序列进行了预测,并与标准的K均值算法、遗传算法和粒子群算法进行了比较,其结果表明,所预测的各项误差均低于其他常规算法的预测结果。

详情信息展示

基于混合粒子群算法的RBF神经网络参数优化

岳恒,张海军,柴天佑

摘 要:针对径向基函数(RBF)神经网络中心参数的优化问题,提出了一种混合粒子群优化算法。该算法应用灰色关联理论定义了粒子群的灰色相似度,分两个阶段对标准的粒子群优化算法(PSO)的全局和局部搜索能力做了改进和提高。在仿真实验中,应用该方法对典型的Mackey-Glass混沌时间序列进行了预测,并与标准的K均值算法、遗传算法和粒子群算法进行了比较,其结果表明,所预测的各项误差均低于其他常规算法的预测结果。

关键词:径向基函数(RBF);粒子群优化算法(PSO);灰色系统;参数优化;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号