Electrochemistry of samarium in lithium-beryllium fluoride salt mixture
来源期刊:JOURNAL OF RARE EARTHS2011年第8期
论文作者:Michal Korenko
文章页码:798 - 803
摘 要:The electrochemical behaviour of samarium was investigated in LiF-BeF2 system on an inert (Mo) electrode by cyclic voltammetry and chronopotentiometry at 804, 833, 847 and 872 K. Redox process Sm3++e-→Sm2+ was recognized and analysed. Cyclic voltammetry data suggested that at potential sweep rates lower than 0.25 V/s, the reduction was limited by the diffusion of Sm3+ ions. It was not possible to observe reduction process of Sm2++2e-→Sm0 due to insufficient electrochemical stability of LiF-BeF2. Diffusion coefficients of Sm3+ ions in LiF-BeF2 were calculated from voltammetric and chronopotentiometric data in the temperature range 804-872 K. Diffusion coefficient values obeyed Arrhenius law. Activation energy was calculated to be 102.5 kJ/mol.
Michal Korenko1,2
摘 要:The electrochemical behaviour of samarium was investigated in LiF-BeF2 system on an inert (Mo) electrode by cyclic voltammetry and chronopotentiometry at 804, 833, 847 and 872 K. Redox process Sm3++e-→Sm2+ was recognized and analysed. Cyclic voltammetry data suggested that at potential sweep rates lower than 0.25 V/s, the reduction was limited by the diffusion of Sm3+ ions. It was not possible to observe reduction process of Sm2++2e-→Sm0 due to insufficient electrochemical stability of LiF-BeF2. Diffusion coefficients of Sm3+ ions in LiF-BeF2 were calculated from voltammetric and chronopotentiometric data in the temperature range 804-872 K. Diffusion coefficient values obeyed Arrhenius law. Activation energy was calculated to be 102.5 kJ/mol.
关键词: